【題目】如圖,拋物線與軸交于點(diǎn)和,與軸交于點(diǎn)頂點(diǎn)為.
求拋物線的解析式;
求的度數(shù);
若點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),過(guò)作軸交拋物線于點(diǎn),交軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
①求線段的最大值;
②若是等腰三角形,直接寫出的值.
【答案】(1)y=x2-4x+3,(2)90°,(3)①,②m=2或m=或m=1.
【解析】
(1)將點(diǎn)B,C代入拋物線的解析式中,利用待定系數(shù)法即可得出答案;
(2)先求出點(diǎn)D的坐標(biāo),然后利用OB=OC,得出∠CBO=45°,過(guò)D作DE⊥x 軸,垂足為E,再利用DE=BE,得出∠DBO=45°,則的度數(shù)可求;
(3)①先用待定系數(shù)法求出直線BC的表達(dá)式,然后設(shè)出M,N的坐標(biāo),表示出線段MN的長(zhǎng)度,利用二次函數(shù)的性質(zhì)即可求出最大值;
②分三種情況: BN=BM, BN=MN, NM=BM分別建立方程求解即可.
解:(1)將點(diǎn)B(3,0)、C(0,3)代入拋物線y=x2+bx+c中,
得:,解得:.
故拋物線的解析式為y=x2-4x+3.
(2)y=x2-4x+3=(x-2)2-1,
∴D點(diǎn)坐標(biāo)為(2,-1).
∵OB=OC=3,
∴∠CBO=45°,
過(guò)D作DE⊥x 軸,垂足為E,則DE=BE=1,
∴∠DBO=45°,
∴∠CBD=90°.
(3)①設(shè)直線BC的解析式為y=kx+3,得:0=3k+3,解得:k=-1,
∴直線BC的解析式為y=-x+3.
點(diǎn)M的坐標(biāo)為(m,m2-4m+3),點(diǎn)N的坐標(biāo)為(m,-m+3).
線段MN=(-m+3)-(m2-4m+3)=-m2+3m=-(m-)2+.
∴當(dāng)m=時(shí),線段MN取最大值,最大值為.
②在Rt△NBH中,BH=3-m,BN=(3-m).
當(dāng)BN=BM時(shí),NH=MH,則-m+3=-(m2-4m+3),
即m2-5m+6=0,解得m1=2,m2=3(舍去),
當(dāng)BN=MN時(shí),-m2+3m=(3-m),解得:m1=,m2=3(舍去),
當(dāng)NM=BM時(shí),∠MNB=∠NBM=45°,則MB與x軸重合,點(diǎn)M與點(diǎn)A重合,
∴m=1,
綜合得:m=2或m=或m=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(a,3)是一次函數(shù)y1=x+1與反比例函數(shù)y2=的圖象的交點(diǎn).(1)求反比例函數(shù)的解析式;(2)在y軸的右側(cè),當(dāng)y1>y2時(shí),直接寫出x的取值范圍;(3)求點(diǎn)A與兩坐標(biāo)軸圍成的矩形OBAC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖有兩個(gè)邊長(zhǎng)為4cm的正方形,其中一個(gè)正方形的頂點(diǎn)在另一個(gè)正方形的中心上,那么圖中陰影部分的面積是( )
A.4cm2B.8cm2
C.16cm2D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年第六屆世界互聯(lián)網(wǎng)大會(huì)在烏鎮(zhèn)召開,小南和小西參加了某分會(huì)場(chǎng)的志愿服務(wù)工作,本次志愿服務(wù)工作一共設(shè)置了三個(gè)崗位,分別是引導(dǎo)員、聯(lián)絡(luò)員和咨詢員.請(qǐng)你用畫樹狀圖或列表法求出小南和小西恰好被分配到同一個(gè)崗位進(jìn)行志愿服務(wù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和圖形G,給出如下定義:將點(diǎn)P沿向右或向上的方向平移一次,平移距離為d(d>0)個(gè)長(zhǎng)度單位,平移后的點(diǎn)記為P′,若點(diǎn)P′在圖形G上,則稱點(diǎn)P為圖形G的“達(dá)成點(diǎn)”.特別地,當(dāng)點(diǎn)P在圖形G上時(shí),點(diǎn)P是圖形G的“達(dá)成點(diǎn)”.例如,點(diǎn)P(﹣1,0)是直線y=x的“達(dá)成點(diǎn)”.
已知⊙O的半徑為1,直線l:y=﹣x+b.
(1)當(dāng)b=﹣3時(shí),
①在O(0,0),A(﹣4,1),B(﹣4,﹣1)三點(diǎn)中,是直線l的“達(dá)成點(diǎn)”的是:_____;
②若直線l上的點(diǎn)M(m,n)是⊙O的“達(dá)成點(diǎn)”,求m的取值范圍;
(2)點(diǎn)P在直線l上,且點(diǎn)P是⊙O的“達(dá)成點(diǎn)”.若所有滿足條件的點(diǎn)P構(gòu)成一條長(zhǎng)度不為0的線段,請(qǐng)直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(jī)/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | ||||
乙 |
(1)寫出表格中的值:
(2)分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡(jiǎn)要分析這兩名隊(duì)員的射擊訓(xùn)練成績(jī).若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八年級(jí)一班開展了“讀一本好書”的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書籍的情況進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷設(shè)置了“小說(shuō)”“戲劇”“散文”“其他”四個(gè)類型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說(shuō) | 0.5 | |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計(jì) | 1 |
根據(jù)圖表提供的信息,解答下列問(wèn)題:
(1)八年級(jí)一班有多少名學(xué)生?
(2)請(qǐng)補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中“其他”類所占的百分比;
(3)在調(diào)查問(wèn)卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從以上四位同學(xué)中任意選出2名同學(xué)參加學(xué)校的戲劇興趣小組,請(qǐng)用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)均為 1.格點(diǎn)三角形 ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn) A、C 的坐標(biāo)分別是(﹣2,0),(﹣3,3).
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系,寫出點(diǎn) B 的坐標(biāo);
(2)把△ABC 繞坐標(biāo)原點(diǎn) O 順時(shí)針旋轉(zhuǎn) 90°得到△A1B1C1,畫出△A1B1C1,寫出點(diǎn)
B1的坐標(biāo);
(3)以坐標(biāo)原點(diǎn) O 為位似中心,相似比為 2,把△A1B1C1 放大為原來(lái)的 2 倍,得到△A2B2C2 畫出△A2B2C2,使它與△AB1C1 在位似中心的同側(cè);
請(qǐng)?jiān)?x 軸上求作一點(diǎn) P,使△PBB1 的周長(zhǎng)最小,并寫出點(diǎn) P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示為兩把按不同比例尺進(jìn)行刻度的直尺,每把直尺的刻度都是均勻的,已知兩把直尺在刻度10處是對(duì)齊的,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對(duì)齊,則上面直尺的刻度16與下面直尺對(duì)應(yīng)的刻度是( )
A.19.4B.19.5C.19.6D.19.7
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com