【題目】(1)觀察猜想
如圖①,點(diǎn)B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為
(2)問題解決
如圖②,在Rt△ABC中,∠ABC=90°,CB=8,AB=4,以AC為直角邊向外作等腰Rt△DAC連接BD,求BD的長(zhǎng)。
(3)拓展延伸
如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=8.AB=4,DC=DA,則BD=
【答案】(1);
(2);
(3).
【解析】
(1)觀察猜想:證明△ADB≌△EAC,可得結(jié)論:BC=AB+AC=BD+CE;
(2)問題解決:作輔助線,同理證明:△ABC≌△DEA,可得DE=AB=2,AE=BC=4,最后利用勾股定理求BD的長(zhǎng);
(3)拓展延伸:同理證明三角形全等,設(shè)AF=x,DF=y,根據(jù)全等三角形對(duì)應(yīng)邊相等列方程組可得結(jié)論.
解:(1)觀察猜想
BC=BD+CE,
理由是:如圖①,∵∠B=90°,∠DAE=90°,
∴∠D+∠DAB=∠DAB+∠EAC=90°,
∴∠D=∠EAC,
∵∠B=∠C=90°,AD=AE,
∴△ADB≌△EAC(AAS),
∴BD=AC,EC=AB,
∴BC=AB+AC=BD+CE;
(2)問題解決
如圖②,過D作DE⊥AB,交BA的延長(zhǎng)線于E,
由(1)得:△ABC≌△DEA,
∴DE=AB=4,AE=BC=8,
Rt△BDE中,BE=BA+AE=4+8=12,
由勾股定理得:
(3)拓展延伸
如圖③,過D作DE⊥BC于E,作DF⊥AB于F,
同理得:△CED≌△AFD,
∴CE=AF,ED=DF,
設(shè)AF=x,DF=y,
∵BC=8,AB=4,
則,解得: ,
∴BF=AF+ AB=2+4=6,DF=6,
由勾股定理得:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:在△ABC中,AB,BC,AC三邊的長(zhǎng)分別為,,,求此三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將△ABC的面積直接填寫在橫線上:________.
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長(zhǎng)分別為a,a,a(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫出相應(yīng)的△ABC,并求出它的面積.
探索創(chuàng)新:
(3)若△ABC三邊的長(zhǎng)分別為,,(m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法畫出示意圖并求出這三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于點(diǎn)E,點(diǎn)F在AC上,BD=DF.
(1)求證:CF=EB.
(2)若AB=12,AF=8,求CF的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD上一點(diǎn),PQ垂直平分BE,分別交AD、BE、BC于點(diǎn)P、O、Q,連接BP、EQ.
(1)求證:四邊形BPEQ是菱形;
(2)若AB=6,F(xiàn)為AB的中點(diǎn),OF+OB=9,求PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)A(-1,12),B(2,-3).
(1)求這個(gè)二次函數(shù)的解析式;
(2)求這個(gè)圖象的頂點(diǎn)坐標(biāo)及與x軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形ABCD的紙片,長(zhǎng)AD=10厘米,寬AB=8厘米,AD沿點(diǎn)A對(duì)折,點(diǎn)D正好落在BC上的點(diǎn)F處,AE是折痕.
(1)圖中有全等的三角形嗎?如果有,請(qǐng)直接寫出來;
(2)求線段EF的長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD的頂點(diǎn)為A(1,2),B(﹣1,2),C(﹣1,﹣2),D(1,﹣2).點(diǎn)M和點(diǎn)N同時(shí)從E點(diǎn)出發(fā),沿四邊形的邊做環(huán)繞勻速運(yùn)動(dòng),M點(diǎn)以1單位/s的速度做逆時(shí)針運(yùn)動(dòng),N點(diǎn)以2單位/s的速度做順時(shí)針運(yùn)動(dòng),則點(diǎn)M和點(diǎn)N第2016次相遇時(shí)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)c為常數(shù)的圖象經(jīng)過點(diǎn),點(diǎn),頂點(diǎn)為點(diǎn)M,過點(diǎn)A作軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.
求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo).
過該二次函數(shù)圖象上一點(diǎn)P作y軸的平行線,交一邊于點(diǎn)Q,是否存在點(diǎn)P,使得以點(diǎn)P、Q、C、O為頂點(diǎn)的四邊形為平行四邊形,若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.
點(diǎn)N是射線CA上的動(dòng)點(diǎn),若點(diǎn)M、C、N所構(gòu)成的三角形與相似,請(qǐng)直接寫出所有點(diǎn)N的坐標(biāo)直接寫出結(jié)果,不必寫解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求證:BE=AD;
(2)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)P、Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com