【題目】問題背景:在△ABC中,AB,BC,AC三邊的長(zhǎng)分別為,,,求此三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將△ABC的面積直接填寫在橫線上:________.
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長(zhǎng)分別為a,a,a(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫出相應(yīng)的△ABC,并求出它的面積.
探索創(chuàng)新:
(3)若△ABC三邊的長(zhǎng)分別為,,(m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法畫出示意圖并求出這三角形的面積.
【答案】(1);(2)3a2;(3)7mn
【解析】
(1)的面積;
(2)是直角邊長(zhǎng)為,的直角三角形的斜邊;是直角邊長(zhǎng)為,的直角三角形的斜邊;是直角邊長(zhǎng)為,的直角三角形的斜邊,把它整理為一個(gè)矩形的面積減去三個(gè)直角三角形的面積;
(3)結(jié)合(1),(2)易得此三角形的三邊分別是直角邊長(zhǎng)為,的直角三角形的斜邊;直角邊長(zhǎng)為,的直角三角形的斜邊;直角邊長(zhǎng)為,的直角三角形的斜邊.同樣把它整理為一個(gè)矩形的面積減去三個(gè)直角三角形的面積.
解:(1);
故答案為:;
(2)如圖1,在邊長(zhǎng)為a的正方形網(wǎng)格中,△ABC即為所求作三角形,S△ABC=2a×4a-×2a×2a-×2a×a-×4a×a=3a2
(3)如圖2,在每個(gè)小長(zhǎng)方形的長(zhǎng)為m、寬為n的網(wǎng)格中,△ABC即為所求作三角形,其中AB=、AC=、BC=,S△ABC=4m×4n-×m×4n-×3m×2n-×4m×2n=7mn.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著交通道路的不斷完善,帶動(dòng)了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2017年“五一”長(zhǎng)假期間旅游情況統(tǒng)計(jì)圖,根據(jù)以下信息解答下列問題:
(1)2017年“五一”期間,該市周邊景點(diǎn)共接待游客 萬(wàn)人,扇形統(tǒng)計(jì)圖中A景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)是 ,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)根據(jù)近幾年到該市旅游人數(shù)增長(zhǎng)趨勢(shì),預(yù)計(jì)2018年“五一”節(jié)將有80萬(wàn)游客選擇該市旅游,請(qǐng)估計(jì)有多少萬(wàn)人會(huì)選擇去E景點(diǎn)旅游?
(3)甲、乙兩個(gè)旅行團(tuán)在A、B、D三個(gè)景點(diǎn)中,同時(shí)選擇去同一景點(diǎn)的概率是多少?請(qǐng)用畫樹狀圖或列表法加以說(shuō)明,并列舉所用等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘輪船位于燈塔B的正西方向A處,且A處與燈塔B相距60海里,輪船沿東北方向勻速航行,到達(dá)位于燈塔B的北偏東l5°方向上的C處.
(1)求∠ACB的度數(shù);
(2)求燈塔B到C處的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于A(1,0),B(﹣3,0)兩點(diǎn),現(xiàn)有經(jīng)過(guò)點(diǎn)A的直線l:y=kx+b1與y軸交于點(diǎn)C,與拋物線的另個(gè)交點(diǎn)為D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)D在第二象限且滿足CD=5AC,求此時(shí)直線1的解析式;在此條件下,點(diǎn)E為直線1下方拋物線上的一點(diǎn),求△ACE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)如圖,設(shè)P在拋物線的對(duì)稱軸上,且在第二象限,到x軸的距離為4,點(diǎn)Q在拋物線上,若以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某住宅小區(qū)在施工過(guò)程中留下了一塊空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,分別以AC,BC為邊長(zhǎng),在三角形外作正方形ACFG和正方形BCED.若AC=4,AB=6,則EF=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:∠1=∠2,EG平分∠AEC.
(1)如圖①,∠MAE=45°,∠FEG=15°,∠NCE=75°.求證:AB∥CD;
(2)如圖②,∠MAE=140°,∠FEG=30°,當(dāng)∠NCE= °時(shí),AB∥CD;
(3)如圖②,請(qǐng)你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時(shí),AB∥CD;
(4)如圖③,請(qǐng)你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時(shí),AB∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】重慶八中的老師工作很忙,但初一年級(jí)很多數(shù)學(xué)老師仍然堅(jiān)持鍛煉身體,比如張老師就經(jīng)常堅(jiān)持飯后走一走.某天晚飯后他從學(xué)校慢步到附近的中央公園,在公園里休息了一會(huì)后,因?qū)W校有事,快步趕回學(xué)校.下面能反映當(dāng)天張老師離學(xué)校的距離y與時(shí)間x的關(guān)系的大致圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)觀察猜想
如圖①,點(diǎn)B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為
(2)問題解決
如圖②,在Rt△ABC中,∠ABC=90°,CB=8,AB=4,以AC為直角邊向外作等腰Rt△DAC連接BD,求BD的長(zhǎng)。
(3)拓展延伸
如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=8.AB=4,DC=DA,則BD=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com