【題目】如圖,在矩形ABCD中,E是AD上一點(diǎn),PQ垂直平分BE,分別交AD、BE、BC于點(diǎn)P、O、Q,連接BP、EQ

(1)求證:四邊形BPEQ是菱形;

(2)若AB=6,F(xiàn)為AB的中點(diǎn),OF+OB=9,求PQ的長(zhǎng).

【答案】1)證明見(jiàn)解析;(2PQ的長(zhǎng)是

【解析】試題分析⑴先根據(jù)線段垂直平分線的性質(zhì)證明QB=QE,由ASA證明△BOQ≌△EOP,得出PE=QB,證出四邊形ABGE是平行四邊形,再根據(jù)菱形的判定即可得出結(jié)論.

⑵根據(jù)三角形中位線的性質(zhì)可得設(shè) ,則

,在RtABE中,根據(jù)勾股定理可得 ,解得BE=10,

得到 ,設(shè) ,則 , ,計(jì)算得出 ,在RtBOP中,根據(jù)勾股定理可得 , 即可求解.

試題解析

1)證明:PQ垂直平分BE,

QB=QEOB=OE,

四邊形ABCD是矩形,

ADBC,

∴ ∠ PEO=∠ QBO,

BOQ EOP中,

,

∴ △ BOQ≌ △ EOPASA),

PE=QB,

ADBC

四邊形BPEQ是平行四邊形,

QB=QE,

四邊形BPEQ是菱形;

2)解:O,F分別為PQ,AB的中點(diǎn),

AE+BE=2OF+2OB=18

設(shè)AE=x,則BE=18﹣x,

Rt△ ABE中,62+x2=18﹣x2,

解得x=8,

BE=18﹣x=10,

OB=BE=5

設(shè)PE=y,則AP=8﹣y,BP=PE=y

Rt△ ABP中,62+8﹣y2=y2,解得y=,

Rt△ BOP中,PO==,

PQ=2PO=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】絕對(duì)值不大于2011的所有整數(shù)之和是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知EABCDBC邊的中點(diǎn),連接AE并延長(zhǎng)AEDC的延長(zhǎng)線于點(diǎn)F,連接AC、BF,若EF=EC,試判斷四邊形ABFC是什么四邊形,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寧波位于東南沿海,中國(guó)大陸海岸線中段,陸域總面積約為9816平方公里.其中9816用科學(xué)記數(shù)法表示為(  )

A.918.6×10B.91.86×102C.9.186×103D.0.9186×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線y=kx+b與拋物線y=ax2(a>0)相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸正半軸相交于點(diǎn)C,過(guò)點(diǎn)A作ADx軸,垂足為D.

(1)若∠AOB=60°AB∥x軸,AB=2,求a的值;

(2)若AOB=90°,點(diǎn)A的橫坐標(biāo)為﹣4,AC=4BC,求點(diǎn)B的坐標(biāo);

(3)延長(zhǎng)AD、BO相交于點(diǎn)E,求證:DE=CO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB∥CD,過(guò)點(diǎn)DDF⊥BC垂足為F,DFAC交于點(diǎn)M,已知∠1=∠2.

(1)求證:CM=DM;

(2)FB=FC,求證:AM-MD=2FM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 的平分線交的外接圓于點(diǎn), 的平分線交于點(diǎn)

1)求證: ;

2)若, ,求外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從下列三個(gè)條件中:(1); (2); (3).任選兩個(gè)作為條件,另一個(gè)作為結(jié)論,書(shū)寫(xiě)出一個(gè)真命題,并證明.

命題:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC,ADBAC的平分線AB=AC+CD,那么ACBABC有怎樣的數(shù)量關(guān)系呢?

1通過(guò)觀察、實(shí)驗(yàn)提出猜想ACBABC的數(shù)量關(guān)系,用等式表示為

2小明把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法

想法1如圖2,延長(zhǎng)ACF,使CF=CD,連接DF.通過(guò)三角形全等、三角形的性質(zhì)等知識(shí)進(jìn)行推理就可以得到ACBABC的數(shù)量關(guān)系

想法2AB上取一點(diǎn)E,使AE=AC,連接ED,通過(guò)三角形全等、三角形的性質(zhì)等知識(shí)進(jìn)行推理,就可以得到ACBABC的數(shù)量關(guān)系

請(qǐng)你參考上面的想法,幫助小明證明猜想中ACBABC的數(shù)量關(guān)系一種方法即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案