【題目】如圖,△ACF≌△DBE,其中點A、B、C、D在一條直線上.
(1)若BE⊥AD,∠F=62°,求∠A的大小.
(2)若AD=9cm,BC=5cm,求AB的長.
【答案】(1)∠A=28°;(2)AB =2 cm.
【解析】
(1)根據(jù)全等三角形的性質得到∠FCA=∠EBD=90°,根據(jù)直角三角形的性質計算即可;
(2)根據(jù)全等三角形的性質得到CA=BD,結合圖形得到AB=CD,計算即可.
(1)∵BE⊥AD,
∴∠EBD=90°.
∵△ACF≌△DBE,
∴∠FCA=∠EBD=90°.
∴∠F+∠A=90°
∵∠F =62°,
∴∠A=28°.
(2)∵△ACF≌△DBE,
∴CA=BD.
∴CA-CB=BD-CB.
即AB=CD.
∵AD=9 cm, BC=5 cm,
∴AB+CD=9-5=4 cm.
∴AB=CD=2 cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E是邊BC的中點,DE的延長線與AB的延長線相交于點F.
(1)求證:△CDE≌△BFE;
(2)試連接BD、CF,判斷四邊形CDBF的形狀,并證明你的結論
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲,乙兩人以相同路線前往距離單位10的培訓中心參加學習.圖中分別表示甲,乙兩人前往目的地所走的路程s隨時間(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達;②甲的平均速度為15千米/小時;③乙走了8后遇到甲;④乙出發(fā)6分鐘后追上甲.其中正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校有3600名學生,為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.
(1)參與本次問卷調(diào)查的學生共有 人,其中選擇D類的人數(shù)有 人;
(2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角的度數(shù),并補全C對應的條形統(tǒng)計圖;
(3)若將A、B、C.D.E這四類上學方式視為“綠色出行”,請估計該校選擇“綠色出行”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度.線段AB的端點A、B都在格點上,請你僅用無刻度的直尺完成下列作圖.(保留必要的作圖痕跡,不必寫作法)
(1)在圖①中以AB為邊作一個正方形ABCD;
(2)在圖②中以點A、點B為頂點作一個面積為12的菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明騎自行車上學,開始以正常速度勻速行駛,但行至中途時,自行車出了故障,只好停下來修車,車修好后,因怕耽誤上課,他比修車前加快了速度繼續(xù)勻速行駛,下面是行駛路程s(m)關于時間t(min)的函數(shù)圖象,那么符合小明行駛情況的大致圖象是()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q再次展平,連接BN,MN,延長MN交BC于點G.有如下結論:①∠ABN= 60°;②AM=1;③;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是.其中正確結論的序號是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應的數(shù)字作為這個兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個,求其算術平方根大于4且小于7的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com