【題目】如圖,ACF≌△DBE,其中點A、B、C、D在一條直線上.

1)若BEAD,∠F=62°,求∠A的大小.

2)若AD=9cm,BC=5cm,求AB的長.

【答案】(1)∠A=28°;(2)AB =2 cm

【解析】

1)根據(jù)全等三角形的性質得到∠FCA=EBD=90°,根據(jù)直角三角形的性質計算即可;
2)根據(jù)全等三角形的性質得到CA=BD,結合圖形得到AB=CD,計算即可.

1)∵BEAD,

∴∠EBD=90°

∵△ACF≌△DBE,

∴∠FCA=EBD=90°

∴∠F+A=90°

∵∠F =62°,

∴∠A=28°

2)∵△ACF≌△DBE,

CA=BD

CA-CB=BD-CB

AB=CD

AD=9 cm, BC=5 cm,

AB+CD=9-5=4 cm

AB=CD=2 cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E是邊BC的中點,DE的延長線與AB的延長線相交于點F.

(1)求證:△CDE≌△BFE;

(2)試連接BD、CF,判斷四邊形CDBF的形狀,并證明你的結論

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】,乙兩人以相同路線前往距離單位10的培訓中心參加學習.圖中分別表示甲,乙兩人前往目的地所走的路程s隨時間()變化的函數(shù)圖象.以下說法:乙比甲提前12分鐘到達;甲的平均速度為15千米/小時;乙走了8后遇到甲;④乙出發(fā)6分鐘后追上甲.其中正確的有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有3600名學生,為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.

1)參與本次問卷調(diào)查的學生共有    人,其中選擇D類的人數(shù)有    人;

2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角的度數(shù),并補全C對應的條形統(tǒng)計圖;

3)若將A、B、CDE這四類上學方式視為綠色出行,請估計該校選擇綠色出行的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度.線段AB的端點AB都在格點上,請你僅用無刻度的直尺完成下列作圖.(保留必要的作圖痕跡,不必寫作法)

1)在圖①中以AB為邊作一個正方形ABCD;

2)在圖②中以點A、點B為頂點作一個面積為12的菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明騎自行車上學,開始以正常速度勻速行駛,但行至中途時,自行車出了故障,只好停下來修車,車修好后,因怕耽誤上課,他比修車前加快了速度繼續(xù)勻速行駛,下面是行駛路程sm)關于時間tmin)的函數(shù)圖象,那么符合小明行駛情況的大致圖象是()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q再次展平,連接BN,MN,延長MN交BC于點G.有如下結論:①∠ABN= 60°;②AM=1;③;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是.其中正確結論的序號是___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在3×3的正方形網(wǎng)格中,∠1+∠2+∠3+∠4+∠5=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應的數(shù)字作為這個兩位數(shù)的十位數(shù).

(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);

(2)從這些兩位數(shù)中任取一個,求其算術平方根大于4且小于7的概率.

查看答案和解析>>

同步練習冊答案