【題目】二次函數(shù)a<0)圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣3,1,與y軸交于點(diǎn)C,下面四個(gè)結(jié)論:

①16a﹣4b+c<0;②P(﹣5,y1),Q,y2)是函數(shù)圖象上的兩點(diǎn),則y1y2;③a=﹣c;④ABC是等腰三角形,則b=﹣.其中正確的有______(請(qǐng)將結(jié)論正確的序號(hào)全部填上)

【答案】①③.

【解析】解:①∵a<0,∴拋物線開口向下,圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣3,1,∴當(dāng)x=﹣4時(shí),y<0,即16a﹣4b+c<0;

正確;

②∵圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣3,1,∴拋物線的對(duì)稱軸是:x=﹣1,∵P(﹣5,y1),Q,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由對(duì)稱性得:(﹣4.5,y3)與Q,y2)是對(duì)稱點(diǎn),y1y2;

不正確;

③∵=﹣1,∴b=2a,當(dāng)x=1時(shí),y=0,即a+b+c=0,3a+c=0,a=﹣c;

要使ACB為等腰三角形,則必須保證AB=BC=4AB=AC=4AC=BC,當(dāng)AB=BC=4時(shí),AO=1,△BOC為直角三角形,又OC的長(zhǎng)即為|c|,∴c2=16﹣9=7,∵由拋物線與y軸的交點(diǎn)在y軸的正半軸上,c=,與b=2a、a+b+c=0聯(lián)立組成解方程組,解得b=﹣

同理當(dāng)AB=AC=4時(shí),∵AO=1,△AOC為直角三角形,又OC的長(zhǎng)即為|c|,∴c2=16﹣1=15,∵由拋物線與y軸的交點(diǎn)在y軸的正半軸上,c=b=2a、a+b+c=0聯(lián)立組成解方程組,解得b=﹣

同理當(dāng)AC=BC時(shí),AOC中,AC2=1+c2,在BOCBC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程無(wú)實(shí)數(shù)解.

經(jīng)解方程組可知有兩個(gè)b值滿足條件.

錯(cuò)誤.

綜上所述,正確的結(jié)論是①③.

故答案為:①③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市用3 000元購(gòu)進(jìn)某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9 000元購(gòu)進(jìn)該種干果,但這次的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%,購(gòu)進(jìn)干果數(shù)量比第一次的2倍還多300 kg.如果超市按9/kg的價(jià)格出售,當(dāng)大部分干果售出后,余下的600 kg按售價(jià)的八折售完.

(1)該種干果第一次的進(jìn)價(jià)是多少?

(2)超市銷售這種干果共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,矩形ABCD,AB=4,BCmm>1),點(diǎn)EAD邊上一定點(diǎn),且AE=1.

(1)當(dāng)m=3時(shí),AB上存在點(diǎn)F,使AEF與△BCF相似,求AF的長(zhǎng)度.

(2)如圖②,當(dāng)m=3.5時(shí)用直尺和圓規(guī)在AB上作出所有使AEF與△BCF相似的點(diǎn)F(不寫作法,保留作圖痕跡)

(3)對(duì)于每一個(gè)確定的m的值,AB上存在幾個(gè)點(diǎn)F,使得△AEF與△BCF相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,為美化校園環(huán)境,某校計(jì)劃在一塊長(zhǎng)為20m,寬為15m的長(zhǎng)方形空地上修建一條寬為am)的甬道,余下的部分鋪設(shè)草坪建成綠地.

1)甬道的面積為   m2,綠地的面積為   m2(用含a的代數(shù)式表示);

2)已知某公園公司修建甬道,綠地的造價(jià)W1(元),W2(元)與修建面積S之間的函數(shù)關(guān)系如圖2所示.①園林公司修建一平方米的甬道,綠地的造價(jià)分別為   元,   元.②直接寫出修建甬道的造價(jià)W1(元),修建綠地的造價(jià)W2(元)與am)的關(guān)系式;③如果學(xué)校決定由該公司承建此項(xiàng)目,并要求修建的甬道寬度不少于2m且不超過(guò)5m,那么甬道寬為多少時(shí),修建的甬道和綠地的總造價(jià)最低,最低總造價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

19﹣(﹣5)﹣(+2+(﹣4)﹣5

2)﹣|7|++3)﹣5

3|1|﹣(+2)﹣(﹣2.75

4)﹣9÷3+×12+(﹣32

5)﹣(﹣3+(﹣9×3+17×(﹣3

6)(÷(﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】嘉嘉將長(zhǎng)為20cm,寬為10cm的長(zhǎng)方形白紙,按圖所示方法粘合起來(lái),粘合部分(圖上陰影部分)的寬為3cm

1)求5張白紙粘合后的長(zhǎng)度;

2)設(shè)x張白紙粘合后總長(zhǎng)為ycm.寫出yx之間的函數(shù)關(guān)系式;

3)求當(dāng)x=20時(shí)的y值,并說(shuō)明它在題目中的實(shí)際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課本拓展

舊知新意:

我們?nèi)菀鬃C明,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在怎樣的數(shù)量關(guān)系呢?

1.嘗試探究:

1如圖1,DBC與ECB分別為ABC的兩個(gè)外角,試探究A與DBC+ECB之間存在怎樣的數(shù)量關(guān)系?為什么?

2.初步應(yīng)用:

2如圖2,在ABC紙片中剪去CED,得到四邊形ABDE,1=130°,則2-C= ;

3小明聯(lián)想到了曾經(jīng)解決的一個(gè)問題:如圖3,在ABC中,BP、CP分別平分外角DBC、ECB,P與A有何數(shù)量關(guān)系?請(qǐng)利用上面的結(jié)論直接寫出答案

3拓展提升:

4如圖4,在四邊形ABCD中,BP、CP分別平分外角EBC、FCB,P與A、D有何數(shù)量關(guān)系?為什么?若需要利用上面的結(jié)論說(shuō)明,可直接使用,不需說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明的媽媽在菜市場(chǎng)買回3斤蘿卜、2斤排骨,準(zhǔn)備做蘿卜排骨湯,下面是爸爸媽媽的對(duì)話:

媽媽:上個(gè)月蘿卜的單價(jià)是/斤,排骨的單價(jià)比蘿卜的7倍還多2;

爸爸:今天,報(bào)紙上說(shuō)與上個(gè)月相比,蘿卜的單價(jià)上漲了25%,排骨的單價(jià)上漲了20%”

請(qǐng)根據(jù)上面的對(duì)話信息回答下列問題:

1)請(qǐng)用含的式子填空:上個(gè)月排骨的單價(jià)是_________/斤,這個(gè)月蘿卜的單價(jià)是__________/斤,排骨的單價(jià)是______________/斤。

2)列式表示今天買的蘿卜和排骨比上月買同重量的蘿卜和排骨一共多花多少元?(結(jié)果要求化成最簡(jiǎn))

3)當(dāng)4,求今天買的蘿卜和排骨比上月買同重量的蘿卜和排骨一共多花多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線 y=2x+3 與直線 y= 2x 1.

1 )求兩直線與 y 軸交點(diǎn)A,B的坐標(biāo);

2 )求兩直線交點(diǎn) C 的坐標(biāo);

3 )求 ABC 的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案