【題目】已知,△ABC 中,∠BAC90°,ABAC,過 A 任作一直線 l,作 BD⊥l DCE⊥l E,觀察三條線段 BDCE,DE 之間的數(shù)量關(guān)系.

1)如圖 1,當(dāng) l 經(jīng)過 BC 中點(diǎn)時(shí),此時(shí) BD CE;

2)如圖 2,當(dāng) l 不與線段 BC 相交時(shí),BDCE,DE 三者的數(shù)量關(guān)系為 ,并證明 你的結(jié)論.

3 )如圖 3 ,當(dāng) l 與線段 BC 相交,交點(diǎn)靠近 B 點(diǎn)時(shí),BD ,CE DE 三者的數(shù)量關(guān)系 .證明你的結(jié)論,并畫圖直接寫出交點(diǎn)靠近 C 點(diǎn)時(shí),BD,CEDE 三者的數(shù)最關(guān) 系為

【答案】(1)=;(2)DEBD+CE,理由詳見解析;(3CEBDDEBDCEDE,理由詳見解析.

【解析】

1)由等腰三角形的性質(zhì)可得直線,可得點(diǎn),點(diǎn)的中點(diǎn)重合,即

2)如圖2,由“”可證,可得,,可得;

3)如圖3,由“”可證,可得,可得,如圖4,由“”可證,可得,,可得

解:(1,,經(jīng)過中點(diǎn)

直線,

點(diǎn),點(diǎn)的中點(diǎn)重合,

故答案為:

2)如圖,

理由如下:

,,

,

,且,

,

故答案為:,

3)如圖

,,

,

,且,

,

如圖4,若交點(diǎn)靠近點(diǎn)時(shí),

,

,

,

,且,,

,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一公路的道路維修工程,準(zhǔn)備從甲、乙兩個(gè)工程隊(duì)選一個(gè)隊(duì)單獨(dú)完成.根據(jù)兩隊(duì)每天的工程費(fèi)用和每天完成的工程量可知,若由兩隊(duì)合做此項(xiàng)維修工程,6天可以完成,共需工程費(fèi)用385200元,若單獨(dú)完成此項(xiàng)維修工程,甲隊(duì)比乙隊(duì)少用5天,每天的工程費(fèi)用甲隊(duì)比乙隊(duì)多4000元,(1)若甲單獨(dú)完成需要多少天?(2)從節(jié)省資金的角度考慮,應(yīng)該選擇哪個(gè)工程隊(duì)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)利用直尺和圓規(guī)完成以下問題. (要求:保留作圖痕跡,補(bǔ)全作法)如圖:在直線MN上求作一點(diǎn)P,使點(diǎn)P到射線OAOB的距離相等.

作法:(1) 以點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑 ,OA于點(diǎn)C,OB于點(diǎn)D.

(2) 分別以點(diǎn)C、D為圓心, CD的長(zhǎng)為 畫弧,兩弧在∠AOB 相交于點(diǎn)Q.

(3) 畫射線OQ,射線OQ與直線MN相交于點(diǎn)P,P點(diǎn)即為所求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上兩點(diǎn),其中A表示的數(shù)為-2,表示的數(shù)為2,若在數(shù)軸上存在一點(diǎn),使得,則稱點(diǎn)叫做點(diǎn)節(jié)點(diǎn),例如圖1所示,若點(diǎn)表示的數(shù)為0,有,則稱點(diǎn)為點(diǎn)、“4節(jié)點(diǎn)”.

請(qǐng)根據(jù)上述規(guī)定回答下列問題:

1)若點(diǎn)為點(diǎn)、節(jié)點(diǎn),且點(diǎn)在數(shù)軸上表示的數(shù)為-4,求的值.

2)若點(diǎn)是數(shù)軸上點(diǎn)、“5節(jié)點(diǎn),請(qǐng)你直接寫出點(diǎn)表示的數(shù)為____________

3)若點(diǎn)在數(shù)軸上(不與、重合),滿足、之間的距離是之間距離的一半,且此時(shí)點(diǎn)為點(diǎn)節(jié)點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形紙片ABC中,∠A=65°,∠B=75°,將∠C沿DE對(duì)折,使點(diǎn)C落在ΔABC外的點(diǎn)處,若∠1=20°,則∠2的度數(shù)為( )

A. 80°B. 90°

C. 100°D. 110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)一張矩形紙片ABCD進(jìn)行折疊,具體操作如下:

第一步:先對(duì)折,使ADBC重合,得到折痕MN,展開;

第二步:再一次折疊,使點(diǎn)A落在MN上的點(diǎn)A′處,并使折痕經(jīng)過點(diǎn)B,得到折痕BE,同時(shí),得到線段BA′,EA′,展開,如圖1;

第三步:再沿EA′所在的直線折疊,點(diǎn)B落在AD上的點(diǎn)B′處,得到折痕EF,同時(shí)得到線段B′F,展開,如圖2.

求證:(1)∠ABE=30°;

(2)四邊形BFB′E為菱形.

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長(zhǎng)為6cm的正方形ABCD折疊,使點(diǎn)D落在AB邊的中點(diǎn)E處,折痕為FH,點(diǎn)C落在Q處,EQBC交于點(diǎn)G,則△EBG的周長(zhǎng)是 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBC,DCEC,AC=BC,DC=EC,圖中AE、BD有怎樣的關(guān)系(數(shù)量關(guān)系和位置關(guān)系)?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是以BC為底的等腰三角形,AD是邊BC上的高,點(diǎn)E、F分別是ABAC的中點(diǎn).

1)求證:四邊形AEDF是菱形;

2)如果四邊形AEDF的周長(zhǎng)為12,兩條對(duì)角線的和等于7,求四邊形AEDF的面積S

查看答案和解析>>

同步練習(xí)冊(cè)答案