【題目】如圖,三角形紙片ABC中,∠A=65°,∠B=75°,將∠C沿DE對折,使點C落在ΔABC外的點處,若∠1=20°,則∠2的度數(shù)為( )

A. 80°B. 90°

C. 100°D. 110°

【答案】C

【解析】

先根據(jù)平角的定義和翻折變換的性質(zhì)求出∠DEC,再根據(jù)三角形內(nèi)角和定理求出∠CDE,即可得出答案.

解:∠A=65°,∠B=75°,∴∠C=C’ =180°-A-B=40°,

由翻折變換的性質(zhì)可得:∠DEC=DEC’,

DEC+DEB=DEC+DEC’-1=180°,

∴∠DEC=100°,

∴∠CDE=EDC’=180°-C-DEC=40°

∴∠2=180°-CDE-EDC’=100°.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮分別從甲地和乙地同時出發(fā),沿同一條路相向而行,小明開始跑步,中途改為步行,到達乙地恰好用小亮騎自行車以的速度直接到甲地,兩人離甲地的路程與各自離開出發(fā)地的時間之間的函數(shù)圖象如圖所示,

甲、乙兩地之間的路程為______m,小明步行的速度為______;

求小亮離甲地的路程y關(guān)于x的函數(shù)表達式,并寫出自變量x的取值范圍;

求兩人相遇的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學第二步到第三步運用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學因式分解的結(jié)果是否徹底?________.(填徹底不徹底)若不徹底,請直接寫出因式分解的最后結(jié)果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關(guān)于方程有且僅有一個實數(shù)根,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB45°,ADBC于點D,點EAD上一點,連接CE,CEAB,若∠ACE20°,則∠B的度數(shù)為( 。

A. 60°B. 65°C. 70°D. 75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,ADBCAE平分∠BAC.

(1)若∠B72°,C30°①求∠BAE的度數(shù);②求∠DAE的度數(shù);

(2)探究:如果只知道∠BC42°,也能求出∠DAE的度數(shù)嗎?若能,請你寫出求解過程;若不能,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=m (x﹣1)( x﹣4)的圖象與x軸交于A,B兩點(點A在點B的左邊),頂點為C,將該二次函數(shù)的圖象關(guān)于x軸翻折,所得圖象的頂點為D.若四邊形ACBD為正方形,則m的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①、②、③是三個可以自由轉(zhuǎn)動的轉(zhuǎn)盤.

(1)若同時轉(zhuǎn)動①、②兩個轉(zhuǎn)盤,則兩個轉(zhuǎn)盤停下時指針所指的數(shù)字都是2的概率為;
(2)甲、乙兩人用三個轉(zhuǎn)盤玩游戲,甲轉(zhuǎn)動轉(zhuǎn)盤,乙記錄指針停下時所指的數(shù)字.游戲規(guī)定:當指針所指的三個數(shù)字中有數(shù)字相同時,就算甲贏,否則就算乙贏.請判斷這個游戲是否公平,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個點在第一象限及x軸、y軸上運動,在第一秒鐘,它從原點(0,0)運動到(0,1),然后接著按圖中箭頭所示方向運動,即(0,00,11,11,0,且每秒移動一個單位,那么第2019秒時這個點所在位置的坐標是_____

查看答案和解析>>

同步練習冊答案