【題目】如圖,在ABC中,∠ACB45°,ADBC于點(diǎn)D,點(diǎn)EAD上一點(diǎn),連接CE,CEAB,若∠ACE20°,則∠B的度數(shù)為(  )

A. 60°B. 65°C. 70°D. 75°

【答案】B

【解析】

根據(jù)已知條件得到ADC是等腰直角三角形,求得ADCD,∠CAE=∠ACD45°,根據(jù)全等三角形的性質(zhì)得到∠B=∠DEC,根據(jù)三角形的外角的性質(zhì)即可得到結(jié)論.

解:∵ADBC,∠ACB45°,

∴△ADC是等腰直角三角形,

ADCD,∠CAE=∠ACD45°

RtABDRtCED,

RtABDRtCEDHL),

∴∠B=∠DEC,

∵∠DEC=∠CAE+ACE45°+20°65°

∴∠B65°,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種型號汽車油箱容量為40L,每行駛100km耗油10L.設(shè)一輛加滿油的該型號汽車行駛路程為x(km),行駛過程中油箱內(nèi)剩余油量為y(L)

(1)求yx之間的函數(shù)表達(dá)式;

(2)為了有效延長汽車使用壽命,廠家建議每次加油時(shí)油箱內(nèi)剩余油量不低于油箱容量的四分之一,按此建議,求該輛汽車最多行駛的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援災(zāi)區(qū),某校愛心活動小組準(zhǔn)備用籌集的資金購買AB兩種型號的學(xué)習(xí)用品共1000件.已知B型學(xué)習(xí)用品的單價(jià)比A型學(xué)習(xí)用品的單價(jià)多10元,用180元購買B型學(xué)習(xí)用品的件數(shù)與用120元購買A型學(xué)習(xí)用品的件數(shù)相同.

1)求A、B兩種學(xué)習(xí)用品的單價(jià)各是多少元?

2)若購買這批學(xué)習(xí)用品的費(fèi)用不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)y1= (x>0)的圖象上,頂點(diǎn)B在函數(shù)y2= (x>0)的圖象上,∠ABO=30°,則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把兩個(gè)含有45°角的大小不同的直角三角板如圖放置,點(diǎn)DBC上,連接BE,AD,AD的延長線交BE于點(diǎn)F.求證:AF⊥BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形紙片ABC中,∠A=65°,∠B=75°,將∠C沿DE對折,使點(diǎn)C落在ΔABC外的點(diǎn)處,若∠1=20°,則∠2的度數(shù)為( )

A. 80°B. 90°

C. 100°D. 110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,BE平分∠ABCDE平分∠ADC,∠BAD70°,∠BCD40°,則∠BED的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A4,a),B(﹣2,﹣4)是一次函數(shù)ykx+b的圖象和反比例函數(shù)y的圖象的交點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=x2+bx的圖象的對稱軸是經(jīng)過點(diǎn)(2,0)且平行于y軸的直線,則關(guān)于x的方程x2+bx=5的解為( )
A.x1=0,x2=4
B.x1=1,x2=5
C.x1=1,x2=﹣5
D.x1=﹣1,x2=5

查看答案和解析>>

同步練習(xí)冊答案