【題目】如圖,點(diǎn)E是矩形ABCD邊AD上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)A、點(diǎn)D不重合,連結(jié)BE、CE,過點(diǎn)B作BFCE,過點(diǎn)C作CFBE,交點(diǎn)為F點(diǎn),連接AF、DF分別交BC于點(diǎn)G、H,則下列結(jié)論錯(cuò)誤的是( 。

A. GH=BC B. SBGF+SCHF=SBCF

C. S四邊形BFCE=ABAD D. 當(dāng)點(diǎn)E為AD中點(diǎn)時(shí),四邊形BECF為菱形

【答案】B

【解析】

根據(jù)矩形的性質(zhì)、平行四邊形的判定和性質(zhì)一一判斷即可;

連接EFBCO

BFCECFBE,∴四邊形BECF是平行四邊形EO=OF

GHAD,AG=GF,HD=FHGH=AD=BC故選項(xiàng)A正確

BG+CH=GH,SBGF+SCHF=SBCF

故選項(xiàng)B錯(cuò)誤

S四邊形BFCE=2SEBC=2××BC×AB=BC×AB=ABAD故選項(xiàng)C正確

∵當(dāng)點(diǎn)EAD中點(diǎn)時(shí)易證EB=EC,所以四邊形BECF為菱形.故選項(xiàng)D正確

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,射線AP△ABC的外側(cè),點(diǎn)B關(guān)于AP的對(duì)稱點(diǎn)為D,連接CD交射線AP于點(diǎn)E,連接BE.

(1)根據(jù)題意補(bǔ)全圖形;

(2)求證:CD=EB+EC

(3)求證:∠ABE=∠ACE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要建一個(gè)面積為150平方米的長(zhǎng)方形養(yǎng)雞場(chǎng),為了節(jié)約材料,雞場(chǎng)一邊靠著原有的一堵墻,墻長(zhǎng)為18米,另三邊用籬笆圍成,如籬笆長(zhǎng)度為35米,且要求用完。求雞場(chǎng)的長(zhǎng)與寬各是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).

(1)在圖中作出△ABC關(guān)于直線l對(duì)稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對(duì)應(yīng))

(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等邊三角形

(1) 如圖1,點(diǎn)E在線段AB上,點(diǎn)D在射線CB上,且ED=EC,將BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°ACF,連接EF,猜想線段AB、DB、AF之間的數(shù)量關(guān)系

(2) 點(diǎn)E在線段BA的延長(zhǎng)線上,其他條件與(1)中的一致,請(qǐng)?jiān)趫D2上將圖形補(bǔ)充完整,并猜想證明線段AB、DB、AF之間的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為等邊三角形,點(diǎn)坐標(biāo)為,點(diǎn)軸上位于點(diǎn)上方的一個(gè)動(dòng)點(diǎn),以為邊向的右側(cè)作等邊,連接,并延長(zhǎng)軸于點(diǎn).

(1)求證:;

(2)當(dāng)點(diǎn)在運(yùn)動(dòng)時(shí),是否平分?請(qǐng)說明理由;

(3)當(dāng)點(diǎn)在運(yùn)動(dòng)時(shí),在軸上是否存在點(diǎn),使得為等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,,于點(diǎn).

1)如圖1,求證:

2)如圖2,若平分,求證:;

3)若,,且為等腰三角形,則______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下車庫(kù)出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車輛經(jīng)過時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計(jì)),其中ABBC,EFBCAEF=143°,AB=AE=1.2米,那么適合該地下車庫(kù)的車輛限高標(biāo)志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AMABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合)DEABAC于點(diǎn)F,CEAM,連結(jié)AE.

(1)如圖1,當(dāng)點(diǎn)DM重合時(shí),求證:四邊形ABDE是平行四邊形;

(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.

(3)如圖3,延長(zhǎng)BDAC于點(diǎn)H,BHAC,BH=AM

①求∠CAM的度數(shù);

②當(dāng)FH=, DM=4時(shí),DH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案