【題目】如圖,在平面直角坐標(biāo)系中,為等邊三角形,點(diǎn)坐標(biāo)為,點(diǎn)為軸上位于點(diǎn)上方的一個(gè)動(dòng)點(diǎn),以為邊向的右側(cè)作等邊,連接,并延長(zhǎng)交軸于點(diǎn).
(1)求證:;
(2)當(dāng)點(diǎn)在運(yùn)動(dòng)時(shí),是否平分?請(qǐng)說明理由;
(3)當(dāng)點(diǎn)在運(yùn)動(dòng)時(shí),在軸上是否存在點(diǎn),使得為等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)見解析(2)平分,理由見解析(3)存在,Q(0,3),(0,1).
【解析】
(1)根據(jù)等邊三角形性質(zhì)得出OP=AP,BP=PC,∠APO=∠CPB=60°,求出∠OPB=∠APC,證出△PBO≌△PCA即可;
(2)由(1)知∠POB=∠PAC=60゜,得到∠PAC=∠OAP=60゜,即可得到平分;
(3)①當(dāng)AQ=AE=2時(shí),△AEQ為等腰三角形,點(diǎn)Q在y軸的正半軸上,求得OQ=AE+AO=3,②當(dāng)AQ=AE=2時(shí),△AEQ為等腰三角形,點(diǎn)Q在y軸的負(fù)半軸上,求得OQ=AQAO=1,③當(dāng)EQ=AE=2時(shí),△AEQ為等腰三角形,x軸是AQ的垂直平分線,求得OQ=AO=1,即可得到結(jié)論.
(1)證明:∵△BPC和△AOP是等邊三角形,
∴OP=AP,BP=PC,∠APO=∠CPB=60°,
∴∠APO+∠APB=∠BPC+∠APB,
即∠OPB=∠APC,
在△PBO和△PCA中,
,
∴△PBO≌△PCA (SAS)
∴OB=AC.
(2)平分,理由如下:
由(1)知∠POB=∠PAC=60゜,
∴∠PAC=∠OAP=60゜,
∴平分;
(3)解:存在,
∵AE=2AO=2,
∴①當(dāng)AQ=AE=2時(shí),△AEQ為等腰三角形,點(diǎn)Q在y軸的正半軸上,
∴OQ=AE+AO=3,
∴Q(0,3),
②當(dāng)AQ=AE=2時(shí),△AEQ為等腰三角形,點(diǎn)Q在y軸的負(fù)半軸上,
∴OQ=AQAO=1,
∴Q(0,1),
③當(dāng)EQ=AE=2時(shí),△AEQ為等腰三角形,x軸是AQ的垂直平分線,
∴OQ=AO=1,
∴Q(0,1).
綜上所述:在y軸上存在點(diǎn)Q,使得△AEQ為等腰三角形,Q(0,3),(0,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩個(gè)全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點(diǎn)E落在AB上,DE所在直線交AC所在直線于點(diǎn)F.
(1)求證:AF+EF=DE;
(2)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)角α,且0°<α<60°,其它條件不變,請(qǐng)?jiān)趫D②中畫出變換后的圖形,并直接寫出你在(1)中猜想的結(jié)論是否仍然成立;
(3)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認(rèn)為(1)中猜想的結(jié)論還成立嗎?若成立,寫出證明過程;若不成立,請(qǐng)寫出AF、EF與DE之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店將每件進(jìn)價(jià)元的某種商品按每件元出售,一天可銷出約件,該店想通過降低售價(jià),增加銷售量的辦法來提高利潤(rùn),經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低元,其銷售量可增加約件.
將這種商品每件的售價(jià)降低多少時(shí),能使商店的銷售利潤(rùn)為元?
這種商品的售價(jià)降低多少時(shí),才能使商店的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知排球場(chǎng)的長(zhǎng)度OD為18 m,位于球場(chǎng)中線處球網(wǎng)的高度AB為2.4 m,一隊(duì)員站在點(diǎn)O處發(fā)球,排球從點(diǎn)O的正上方1.6 m的C點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn)O的水平距離OE為6 m時(shí),到達(dá)最高點(diǎn)G建立如圖所示的平面直角坐標(biāo)系
(1) 當(dāng)球上升的最大高度為3.4 m時(shí),對(duì)方距離球網(wǎng)0.4 m的點(diǎn)F處有一隊(duì)員,他起跳后的最大高度為3.1 m,問這次她是否可以攔網(wǎng)成功?請(qǐng)通過計(jì)算說明
(2) 若隊(duì)員發(fā)球既要過球網(wǎng),又不出邊界,問排球飛行的最大高度h的取值范圍是多少?(排球壓線屬于沒出界)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD邊AD上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)A、點(diǎn)D不重合,連結(jié)BE、CE,過點(diǎn)B作BF∥CE,過點(diǎn)C作CF∥BE,交點(diǎn)為F點(diǎn),連接AF、DF分別交BC于點(diǎn)G、H,則下列結(jié)論錯(cuò)誤的是( 。
A. GH=BC B. S△BGF+S△CHF=S△BCF
C. S四邊形BFCE=ABAD D. 當(dāng)點(diǎn)E為AD中點(diǎn)時(shí),四邊形BECF為菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,的平分線與的垂直平分線交于點(diǎn),將沿(在上,在上)折疊,點(diǎn)與點(diǎn)恰好重合,則為______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),他們的運(yùn)動(dòng)時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請(qǐng)說明理由
(2)判斷此時(shí)線段PC和線段PQ的關(guān)系,并說明理由。
(3)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變,設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班參加一次智力競(jìng)賽,共a、b、c三題,每題或者得滿分或者得0分,其中題a滿分20分,題b、題c滿分均為25分.競(jìng)賽結(jié)果,每個(gè)學(xué)生至少答對(duì)了一題,三題全答對(duì)的有1人,答對(duì)其中兩道題的有15人,答對(duì)題a的人數(shù)與答對(duì)題b的人數(shù)之和為29,答對(duì)題a的人數(shù)與答對(duì)題c的人數(shù)之和為25,答對(duì)題b的人數(shù)與答對(duì)題c的人數(shù)之和為20,在這個(gè)班的平均成績(jī)是__分.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com