【題目】1)問(wèn)題發(fā)現(xiàn)

如圖1,均為等邊三角形,直線和直線交于點(diǎn)

填空:①的度數(shù)是 ;

②線段,之間的數(shù)量關(guān)系為

2)類比探究

如圖2,均為等腰直角三角形,,,,直線和直線交于點(diǎn).請(qǐng)判斷的度數(shù)及線段,之間的數(shù)量關(guān)系,并說(shuō)明理由.

3)解決問(wèn)題

如圖3,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)軸上任意一點(diǎn),連接,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連接,請(qǐng)直接寫(xiě)出的最小值.

【答案】1)①;②

2;,理由見(jiàn)解析

3的最小值為

【解析】

1)先證明,可得,即可求得度數(shù),.

2)先證明,可得,由此即可解決問(wèn)題;

3)過(guò)點(diǎn)C軸于點(diǎn)D,先證明,可得出,設(shè)B(0a),則點(diǎn)Ca4+a),利用勾股定理列出關(guān)于a的式子,配方求出OC的最小值即可.

(1)如圖1中,

∵△ABCCDE均為等邊三角形,

CA=CBCD=CE,∠ACB=DCE=

∴∠ACD=BCE

∴△ACD≌△BCE(SAS)

AD=BE,∠CAD=CBF

設(shè)BCAF于點(diǎn)O

∵∠AOC=BOF

∴∠BFO=ACO=60°,

∴∠AFB=

2,均為等腰直角三角形

∴△ACD∽△BCE

∵∠AFB+CBF=ACB+CAF

∴∠AFB=ACB=;

3)過(guò)點(diǎn)C軸于點(diǎn)D

繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到

設(shè)B(0,a),則點(diǎn)Ca,4+a

∴當(dāng)a=-2時(shí),取最小值8,此時(shí)OC=,

OC可取的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校根據(jù)學(xué)校實(shí)際,決定開(kāi)設(shè):籃球、:乒乓球、:聲樂(lè)、:健美操四種活動(dòng)項(xiàng)目(必選且只能選一個(gè)),為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果整理后會(huì)制成如圖所示的不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息回答下列問(wèn)題:

1)求這次被調(diào)查的學(xué)生共有多少人;

2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)已知該校有學(xué)生1600人,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)該校最喜歡乒乓球的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C均在坐標(biāo)軸上,AO=BO=CO=1,過(guò)A,O,C作⊙D,E是⊙D上任意一點(diǎn),連結(jié)CE, BE,則的最大值是(

A. 4 B. 5 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)ykx+bk≠0)的圖象與x軸、y軸分別交于點(diǎn)A、B兩點(diǎn),且與反比例函數(shù)y的圖象在第一象限內(nèi)的部分交于點(diǎn)CCD垂直于x軸于點(diǎn)D,其中OAOBOD2

1)直接寫(xiě)出點(diǎn)AC的坐標(biāo);

2)求這兩個(gè)函數(shù)的表達(dá)式;

3)若點(diǎn)Py軸上,且SACP14,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊的頂點(diǎn),規(guī)定把先沿軸翻折,再向左平移1個(gè)單位為一次變換,這樣連續(xù)經(jīng)過(guò)2019次變換后,等邊的頂點(diǎn)的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在, ,將直角三角板的直角頂點(diǎn)與邊的中點(diǎn)重合,直角三角板繞著點(diǎn)旋轉(zhuǎn),兩條直角邊分別交邊于,的最小值是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像分別交x、y軸于點(diǎn)AB,拋物線經(jīng)過(guò)點(diǎn)A、B,點(diǎn)P為第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn).

1)求此拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;

2)如圖1所示,過(guò)點(diǎn)PPM∥y軸,分別交直線AB、x軸于點(diǎn)C、D,若以點(diǎn)P、B、C為頂點(diǎn)的三角形與以點(diǎn)AC、D為頂點(diǎn)的三角形相似,求點(diǎn)P的坐標(biāo);

3)如圖2所示,過(guò)點(diǎn)PPQ⊥AB于點(diǎn)Q,連接PB,當(dāng)△PBQ中有某個(gè)角的度數(shù)等于∠OAB度數(shù)的2倍時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,,為矩形的中心,以為圓心1為半徑作上的一個(gè)動(dòng)點(diǎn),連接,則面積的最大值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,C=90°,BC=16,DC=12,AD=21。動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線DA的方向以每秒2兩個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).

【1】設(shè)BPQ的面積為S,求St之間的函數(shù)關(guān)系式

【2】當(dāng)線段PQ與線段AB相交于點(diǎn)O,且2AOOB時(shí),求t的值.

【3】當(dāng)t為何值時(shí),以B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?

【4】是否存在時(shí)刻t,使得PQBD?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案