【題目】如圖,已知一次函數(shù)y=kx+b(k≠0)的圖象與x軸、y軸分別交于點(diǎn)A、B兩點(diǎn),且與反比例函數(shù)y=的圖象在第一象限內(nèi)的部分交于點(diǎn)C,CD垂直于x軸于點(diǎn)D,其中OA=OB=OD=2.
(1)直接寫出點(diǎn)A、C的坐標(biāo);
(2)求這兩個(gè)函數(shù)的表達(dá)式;
(3)若點(diǎn)P在y軸上,且S△ACP=14,求點(diǎn)P的坐標(biāo).
【答案】(1)A點(diǎn)坐標(biāo)為(﹣2,0),C點(diǎn)坐標(biāo)為(2,4);(2)反比例函數(shù)解析式為y=,一次函數(shù)解析式為y=x+2;(3)點(diǎn)P的坐標(biāo)為(0,9)或(0,﹣5).
【解析】
(1)利用直接寫出A點(diǎn)坐標(biāo)和B點(diǎn)坐標(biāo),再利用平分線分線段成比例定理計(jì)算出CD得到C點(diǎn)坐標(biāo);
(2)利用待定系數(shù)法求反比例函數(shù)解析式和一次函數(shù)解析式;
(3)設(shè),利用三角形面積公式得到,然后其出t得到點(diǎn)P的坐標(biāo).
解:(1)∵OA=OB=OD=2.
∴A點(diǎn)坐標(biāo)為(﹣2,0),B點(diǎn)坐標(biāo)為(0,2),
∵,
∴OB:CD=OA:AD,
∴CD==4,
∴C點(diǎn)坐標(biāo)為(2,4),
(2)把C(2,4)代入y=得m=2×4=8,
∴反比例函數(shù)解析式為,
把A(﹣2,0),B(0,2)代入y=kx+b得,解得,
∴一次函數(shù)解析式為y=x+2;
(3)設(shè)P(0,t),
∵S△ACP=14,
而S△PBA+S△PBC=S△PAC,
∴|t﹣2|×4=14,解得t=9或t=﹣5,
∴點(diǎn)P的坐標(biāo)為(0,9)或(0,﹣5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,連接AD、BC、BD、DC,若BD = CD,∠DBC = 20°,則,∠ABC =_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,當(dāng)點(diǎn)、、三點(diǎn)共線時(shí),旋轉(zhuǎn)角為,連接,交于點(diǎn),下面結(jié)論:①為等腰三角形;②;③;④;⑤中,正確結(jié)論的個(gè)數(shù)是( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明與小紅玩一個(gè)游戲:一張卡片上標(biāo)上數(shù)字0,另有n張質(zhì)地都相同的卡片上標(biāo)有數(shù)字1,2,3,…,n,將標(biāo)有數(shù)字的一面朝下,小明從中任意抽取一張后放回洗勻,然后再取出一張;小紅從中任意抽取一張后不放回,直接再抽取一張.
(1)n=3時(shí),分別求小明抽出的兩張卡片上的數(shù)積為0的概率與小紅抽出的兩張卡片上的數(shù)積為0的概率.(請(qǐng)用畫樹(shù)狀圖或列表的形式給出分析過(guò)程)
(2)小明抽出的兩張卡片上的數(shù)積為0的概率是__________(用n表示);小紅抽出的兩張卡片上的數(shù)積為0的概率是__________(用n表示)
(3)若小紅抽出的兩張卡片上的數(shù)積為0的概率小于,則n的值至少是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊BC、CD的中點(diǎn),連接AF、DE交于點(diǎn)P,過(guò)B作BG∥DE交AD于G,BG與AF交于點(diǎn)M.對(duì)于下列結(jié)論:①AF⊥DE;②G是AD的中點(diǎn);③∠GBP=∠BPE;④S△AGM:S△DEC=1:4.正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O直徑,D為⊙O上一點(diǎn),AT平分∠BAD交⊙O于點(diǎn)T,過(guò)T作AD的垂線交AD的延長(zhǎng)線于點(diǎn)C.
(1)求證:CT為⊙O的切線;
(2)若⊙O半徑為2,CT=,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,和均為等邊三角形,直線和直線交于點(diǎn).
填空:①的度數(shù)是 ;
②線段,之間的數(shù)量關(guān)系為 .
(2)類比探究
如圖2,和均為等腰直角三角形,,,,直線和直線交于點(diǎn).請(qǐng)判斷的度數(shù)及線段,之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)解決問(wèn)題
如圖3,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)為軸上任意一點(diǎn),連接,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至,連接,請(qǐng)直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,D是⊙O上一點(diǎn),點(diǎn)E時(shí)的中點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BD的延長(zhǎng)線于點(diǎn)F.連接AE并延長(zhǎng)交BF于點(diǎn)C.
(1)求證:AB=BC;
(2)如果AB=10.tan∠FAC=,求FC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,P為AB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)M、N,過(guò)Q作QE⊥AB于點(diǎn)E,過(guò)M作MF⊥BC于點(diǎn)F.
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com