【題目】如圖,AB是⊙O直徑,D為⊙O上一點(diǎn),AT平分∠BAD交⊙O于點(diǎn)T,過T作AD的垂線交AD的延長線于點(diǎn)C.
(1)求證:CT為⊙O的切線;
(2)若⊙O半徑為2,CT=,求AD的長.
【答案】解:(1)證明:連接OT,
∵OA=OT,∴∠OAT=∠OTA。
又∵AT平分∠BAD,∴∠DAT=∠OAT。∴∠DAT=∠OTA。
∴OT∥AC。
又∵CT⊥AC,∴CT⊥OT。
∵OT是⊙O的半徑,∴CT為⊙O的切線。
(2)過O作OE⊥AD于E,則E為AD中點(diǎn),
∵CT⊥AC,∴OE∥CT。∴四邊形OTCE為矩形。
∵CT=,∴OE=。
又∵OA=2,
∴在Rt△OAE中,。
∴AD=2AE=2。
【解析】
試題(1)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個(gè)銳角互余,證得CT⊥OT,CT為⊙O的切線。
(2)證明四邊形OTCE為矩形,求得OE的長,在直角△OAE中,利用勾股定理即可求解。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E兩點(diǎn)分別在AC,BC上,且DE∥AB,將△CDE繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問題發(fā)現(xiàn):當(dāng)α=0°時(shí),的值為 ;
(2)拓展探究:當(dāng)0°≤α<360°時(shí),若△EDC旋轉(zhuǎn)到如圖2的情況時(shí),求出的值;
(3)問題解決:當(dāng)△EDC旋轉(zhuǎn)至A,B,E三點(diǎn)共線時(shí),若設(shè)CE=5,AC=4,直接寫出線段BE的長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,對于直線同側(cè)的、兩點(diǎn),若在上的點(diǎn)滿足,則稱為、兩點(diǎn)在上的反射點(diǎn),與的和稱為、兩點(diǎn)的反射距離.
(1)如圖2,在邊長為2的正方形中,為的中點(diǎn),為、兩點(diǎn)在直線上的反射點(diǎn),求、兩點(diǎn)的反射距離;
(2)如圖3,內(nèi)接于,直徑為4,,點(diǎn)為劣弧上一動(dòng)點(diǎn),點(diǎn)為、兩點(diǎn)在上的反射點(diǎn),當(dāng)、兩點(diǎn)的反射距離最大時(shí),求劣弧的長;
(3)如圖4,在平面直角坐標(biāo)系中,拋物線與軸正半軸交于點(diǎn),頂點(diǎn)為,若點(diǎn)為點(diǎn)、在上的反射點(diǎn),同時(shí)點(diǎn)為點(diǎn)、在上的反射點(diǎn).
①請判斷線段和的位置關(guān)系,并給出證明;
②求、兩點(diǎn)的反射距離與、兩點(diǎn)的反射距離的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3,點(diǎn)P是邊AB上的一動(dòng)點(diǎn),連接DP,
(1)若將△DAP沿DP折疊,點(diǎn)A落在矩形的對角線上點(diǎn)A處,試求AP的長;
(2)點(diǎn)P運(yùn)動(dòng)到某一時(shí)刻,過點(diǎn)P作直線PE交BC于點(diǎn)E,將△DAP與△PBE分別沿DP與PE折疊,點(diǎn)A與點(diǎn)B分別落在點(diǎn)A,B處,若P,A,B三點(diǎn)恰好在同一直線上,且AB=2,試求此時(shí)AP的長.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到邊AB的中點(diǎn)處時(shí),過點(diǎn)P作直線PG交BC于點(diǎn)G,將△DAP與△PBG分別沿DP與PG折疊,點(diǎn)A與點(diǎn)B重合于點(diǎn)F處,請直接寫出F到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b(k≠0)的圖象與x軸、y軸分別交于點(diǎn)A、B兩點(diǎn),且與反比例函數(shù)y=的圖象在第一象限內(nèi)的部分交于點(diǎn)C,CD垂直于x軸于點(diǎn)D,其中OA=OB=OD=2.
(1)直接寫出點(diǎn)A、C的坐標(biāo);
(2)求這兩個(gè)函數(shù)的表達(dá)式;
(3)若點(diǎn)P在y軸上,且S△ACP=14,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設(shè)計(jì)圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點(diǎn)C在DE上,CD=0.5米,CD是限高標(biāo)志牌的高度(標(biāo)志牌上寫有:限高 米).如果進(jìn)入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,將直角三角板的直角頂點(diǎn)與邊的中點(diǎn)重合,直角三角板繞著點(diǎn)旋轉(zhuǎn),兩條直角邊分別交邊于,則的最小值是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com