【題目】如圖,等邊的頂點(diǎn),,規(guī)定把“先沿軸翻折,再向左平移1個(gè)單位”為一次變換,這樣連續(xù)經(jīng)過2019次變換后,等邊的頂點(diǎn)的坐標(biāo)為( )
A.B.C.D.
【答案】D
【解析】
先求出點(diǎn)C坐標(biāo),第一次變換,根據(jù)軸對稱判斷出點(diǎn)C變換后在x軸下方然后求出點(diǎn)C縱坐標(biāo),再根據(jù)平移的距離求出點(diǎn)C變換后的橫坐標(biāo),最后寫出第一次變換后點(diǎn)C坐標(biāo),同理可以求出第二次變換后點(diǎn)C坐標(biāo),以此類推可求出第n次變化后點(diǎn)C坐標(biāo).
∵△ABC是等邊三角形AB=3-1=2
∴點(diǎn)C到x軸的距離為1+,橫坐標(biāo)為2
∴C(2,)
由題意可得:第1次變換后點(diǎn)C的坐標(biāo)變?yōu)?/span>(2-1,),即(1,),
第2次變換后點(diǎn)C的坐標(biāo)變?yōu)?/span>(2-2,),即(0,)
第3次變換后點(diǎn)C的坐標(biāo)變?yōu)?/span>(2-3,),即(-1,)
第n次變換后點(diǎn)C的坐標(biāo)變?yōu)?/span>(2-n,)(n為奇數(shù))或(2-n,)(n為偶數(shù)),
∴連續(xù)經(jīng)過2019次變換后,等邊的頂點(diǎn)的坐標(biāo)為(-2017,),
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠ABD=90°,AD= 5,BD=3,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB- BC以每秒個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng)(點(diǎn)P不與點(diǎn)A、B、C重合).在點(diǎn)P運(yùn)動(dòng)的過程中,過點(diǎn)P作AB所在直線的垂線.交邊AD或邊CD于點(diǎn)Q,以PQ為一邊作矩形PQMN,且QM=2.MN與BD在PQ的同側(cè),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),
(1)當(dāng)t= 5時(shí),求線段CP的長;
(2)求線段PQ的長(用含t的代數(shù)式表示);
(3)當(dāng)點(diǎn)M落在BD上時(shí),求t的值;
(4)當(dāng)矩形PQMN與ABCD重疊部分圓形為五邊形時(shí),直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P是平面直角坐標(biāo)系中的一點(diǎn)且不在坐標(biāo)軸上,過點(diǎn)P向x軸、y軸作垂線段,若垂線段的長度的和為4,則點(diǎn)P叫做“垂距點(diǎn)”,例如:如圖中的點(diǎn)P(1,3)是“垂距點(diǎn)”.
(1)在點(diǎn)A(﹣2,2),,C(﹣1,5)是“垂距點(diǎn)”是 ;
(2)若是“垂距點(diǎn)”,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊BC、CD的中點(diǎn),連接AF、DE交于點(diǎn)P,過B作BG∥DE交AD于G,BG與AF交于點(diǎn)M.對于下列結(jié)論:①AF⊥DE;②G是AD的中點(diǎn);③∠GBP=∠BPE;④S△AGM:S△DEC=1:4.正確的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點(diǎn)E作⊙O的切線ED,AD⊥ED于D,直線ED交AB的延長線于點(diǎn)C.
(1)求證:AE平分∠CAD.
(2)若BC=2,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,和均為等邊三角形,直線和直線交于點(diǎn).
填空:①的度數(shù)是 ;
②線段,之間的數(shù)量關(guān)系為 .
(2)類比探究
如圖2,和均為等腰直角三角形,,,,直線和直線交于點(diǎn).請判斷的度數(shù)及線段,之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題
如圖3,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)為軸上任意一點(diǎn),連接,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至,連接,請直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了進(jìn)一步了解某校九年級(jí)1000名學(xué)生的身體素質(zhì)情況,體育老師對該校九年級(jí)(1)班50位學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖,圖表如下所示:
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
第1組 | 80≤x<100 | 6 |
第2組 | 100≤x<120 | 8 |
第3組 | 120≤x<140 | 12 |
第4組 | 140≤x<160 | a |
第5組 | 160≤x<180 | 6 |
請結(jié)合圖表完成下列問題:
(1)求表中a的值;
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若在一分鐘內(nèi)跳繩次數(shù)少于120次的為測試不合格,試估計(jì)該年級(jí)學(xué)生不合格的人數(shù)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個(gè)直角三角形的兩條直角邊的比為,那么這個(gè)三角形叫做“半正切三角形”.
(1)如圖①,正方形網(wǎng)格中,已知格點(diǎn),,在格點(diǎn),,,中,與,能構(gòu)成“半正切三角形”的是點(diǎn)__________;
(2)如圖②,為“半正切三角形”,點(diǎn)在斜邊上,點(diǎn)在邊上,將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn),所得射線交邊于點(diǎn),連接.
①小彤發(fā)現(xiàn):若為斜邊的中點(diǎn),則一定為“半正切三角形”.請判斷“小彤發(fā)現(xiàn)”是否正確?并說明理由;
②連接,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有三張卡片(背面完全相同)分別寫有,,,把它們背面朝上洗勻后,小軍從中抽取一張,記下這個(gè)數(shù)后放回洗勻,小明又從中抽出一張.
兩人抽取的卡片上的數(shù)是的概率是________.
李剛為他們倆設(shè)定了一個(gè)游戲規(guī)則:若兩人抽取的卡片上兩數(shù)之積是有理數(shù),則小軍獲勝,否則小明獲勝,你認(rèn)為這個(gè)游戲規(guī)則對誰有利?請用列表法或樹狀圖進(jìn)行分析說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com