【題目】為了增強環(huán)境保護意識, 世界環(huán)境日當天,若干名環(huán)境小衛(wèi)士組成了控制噪聲污染課題學習研究小組.該小組抽樣調(diào)查了全市 個噪聲測量點在某時刻的噪聲聲級(單位:),將調(diào)查的數(shù)據(jù)進行處理(設所測數(shù)據(jù)均為正整數(shù)),得頻數(shù)分布表如表:

組  別

噪聲聲級分組

頻  數(shù)

頻  率

1

44.5--59.5

4

0.1

2

59.5--74.5

a

0.2

3

74.5--89.5

10

0.25

4

89.5--104.5

b

c

5

104.5--119.5

6

0.15

合 計

40

1.00

根據(jù)表中提供的信息解答下列問題:

1)頻數(shù)分布表中的 , ;

2)補全完整頻數(shù)分布直方圖(如圖);

3)從這個統(tǒng)計中,你認為噪聲污染的噪音聲級分布情況怎樣?

【答案】1 ;;(2)圖見解析;(3)噪聲聲級 所占比例最大;噪聲聲級 所占比例最。辉肼曃廴镜念l率隨聲級先增大再減。

【解析】

1)用總數(shù)乘以59.5--74.5的頻率求出a,再用總人數(shù)減去其它段的頻數(shù)求出b;用89.5--104.5的頻數(shù)除以總數(shù)求出c

2)利用(1)的結果補全即可;

3)根據(jù)直方圖即可得出結論.

解:(1a=40×0.2=8
b=40-4-8-10-6=12,
c=12÷40=0.3

故答案為:;;

2)補全頻數(shù)分布直方圖如圖所示:

3)由直方圖可知:①噪聲聲級所占比例最大.

②噪聲聲級所占比例最小.

③噪聲污染的頻率隨聲級先增大再減。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于任意兩點A(x1,y1)B (x2,y2),規(guī)定運算:

(1)A⊕B=(x1+x2,y1+y2);

(2)A⊙B=x1x2+y1y2

(3)當x1=x2且y1=y2時,A=B.

有下列四個命題:

①若有A(1,2),B(2,﹣1),則A⊕B=(3,1),A⊙B=0;

②若有A⊕B=B⊕C,則A=C;

③若有A⊙B=B⊙C,則A=C;

④(A⊕B)⊕C=A⊕(B⊕C)對任意點A、B、C均成立.

其中正確的命題為______(只填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果公司購進10 000kg蘋果,公司想知道蘋果的損壞率,從所有蘋果中隨機抽取若干進行統(tǒng)計,部分結果如下表:

蘋果總質(zhì)量n(kg)

100

200

300

400

500

1000

損壞蘋果質(zhì)量m(kg)

10.50

19.42

30.63

39.24

49.54

101.10

蘋果損壞的頻率

(結果保留小數(shù)點后三位)

0.105

0.097

0.102

0.098

0.099

0.101

估計這批蘋果損壞的概率為_____(結果保留小數(shù)點后一位),損壞的蘋果約有______kg.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在函數(shù)y=(x0)的圖象上有點P1P2、P3Pn、Pn+1,點P1的橫坐標為2,且后面每個點的橫坐標與它前面相鄰點的橫坐標的差都是2,過點P1、P2P3Pn、Pn+1分別作x軸、y軸的垂線段,構成若干個矩形,如圖所示,將圖中陰影部分的面積從左至右依次記為S1S2、S3Sn,則Sn=______(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】恰逢“植樹節(jié)”,師梅與博小兩所學校決定購進A,B兩種樹苗進行種植,已知兩所學校共花費了390元購進了50棵樹苗,其中A樹苗10元一棵,B樹苗5元一棵.現(xiàn)在要將50棵樹苗運往兩所學校,其運費如下表所示:

樹苗類型

師梅(元/棵)

博。ㄔ/棵)

A

8

10

B

6

5

1)求這50棵樹苗中AB樹苗各多少棵?

2)現(xiàn)師梅需要30棵樹苗,博小需要20棵樹苗,設師梅需要A樹苗為x棵,運往師梅和博小的總運費為y,求yx的函數(shù)解析式.

3)在(2)的條件下,若運往師梅的運費不超過200元,請你寫出使總運費最少的樹苗分配方案,并求出最少費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,直線L:yax10ax軸負半軸、y軸正半軸分別交于AB兩點.

1)當OAOB時,試確定直線L的解析式;

2)在(1)的條件下,如圖②所示,設QAB延長線上一點,作直線OQ,過A、B兩點分別作AMOQMBNOQN,若AM8,BN6,求MN的長.

3)當a取不同的值時,點By軸正半軸上運動,分別以OB、AB為邊,點B為直角頂點在第一、二象限內(nèi)作等腰直角OBF和等腰直角ABE,連接EFy軸于P點,如圖③,問:當點By軸正半軸上運動時,試猜想PB的長是否為定值,若是,請求出其值,若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件

B. 甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S2=0.4S2=0.6,則甲的射擊成績較穩(wěn)定

C. 明天降雨的概率為,表示明天有半天都在降雨

D. 了解一批電視機的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南果梨是東北遼寧省的一大特產(chǎn),現(xiàn)有20筐南國梨,以每筐25千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:

與標準質(zhì)量的差值

(單位:千克)

3

2

1.5

0

1

2.5

筐數(shù)

1

4

2

3

2

8

120筐南果梨中,最重的一筐比最輕的一筐重多少千克?

2)與標準重量比較,20筐南果梨總計超過或不足多少千克?

3)若南果梨每千克售價4元,則這20筐可賣多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(4,﹣2)、B(﹣2,n)兩點,與x軸交于點C.

(1)求k2n的值;

(2)請直接寫出不等式k1x+b<的解集;

(3)將x軸下方的圖象沿x軸翻折,點A落在點A處,連接AB,AC,求ABC的面積.

查看答案和解析>>

同步練習冊答案