精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABC中,DBC邊上的一點,EAD的中點,過點ABC的平行線交BE的延長線于點F,且AFDC,連接CF

1)求證:DBC的中點;

2)若∠BAC90°,求證:四邊形ADCF是菱形.

【答案】1)見解析;(2)見解析.

【解析】

1)首先利用平行線的性質得出AEF≌△DEB,進而得出DBC的中點;

2)先證明四邊形ADCF是平行四邊形,再由直角三角形斜邊上的中線性質得出ADDC,即可得出結論.

1)證明:∵AFBC,

∴∠AFE=∠DBE,

EAD的中點,

AEDE,

AEFDEB中,

,

∴△AEF≌△DEBAAS),

AFDB,

AFDC

DBDC,即DBC的中點;

2)證明:∵AFDCAFDC,

∴四邊形ADCF是平行四邊形,

∵∠BAC90°,DBDC

ADBCDC,

∴四邊形ADCF是菱形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某商店銷售一種商品,童威經市場調查發(fā)現:該商品的周銷售量(件)是售價(元/件)的一次函數,其售價、周銷售量、周銷售利潤(元)的三組對應值如下表:

售價(元/件)

50

60

80

周銷售量(件)

100

80

40

周銷售利潤(元)

1000

1600

1600

注:周銷售利潤=周銷售量×(售價-進價)

1)①求關于的函數解析式(不要求寫出自變量的取值范圍)

②該商品進價是_________/件;當售價是________/件時,周銷售利潤最大,最大利潤是__________

2)由于某種原因,該商品進價提高了/,物價部門規(guī)定該商品售價不得超過65/件,該商店在今后的銷售中,周銷售量與售價仍然滿足(1)中的函數關系.若周銷售最大利潤是1400元,求的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以△ABC的邊AB為直徑作⊙O,且頂點C⊙O上,過點B的切線與AC的延長線交于點DEBD中點,連接CE

1)求證:CE⊙O的切線;

2)若AC8,BC6,求BDCE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解本校九年級學生期末數學考試情況,在九年級隨機抽取了一部分學生 的期末數學成績?yōu)闃颖荆譃?/span> A(90~100 分);B(80~89 分);C(60~79 分);D(0~59 分)四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下統(tǒng)計圖,請你根據統(tǒng)計圖解答以下 問題.

(1)這次隨機抽取的學生共有多少人?

(2)請補全條形統(tǒng)計圖;

(3)這個學校九年級共有學生 1200 人,若分數為 80 分(含 80 分)以上為優(yōu)秀,請估 計這次九年級學生期末數學考試成績?yōu)閮?yōu)秀的學生人數大約有多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數y2xy=﹣x的圖象分別為直線l1l2,過點(1,0)作x軸的垂線交l1于點A1,過點A1y軸的垂線交l2于點A2,過點A2x軸的垂線交l1于點A3,過點A3y軸的垂線交l2于點A4,,依次進行下去,則點A2019的坐標為(  )

A.21009,21010B.(﹣2100921010

C.21009,﹣21010D.(﹣21009,﹣21010

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明和小亮分別從甲地和乙地同時出發(fā),沿同一條路相向而行,小明開始跑步,中途改為步行,到達乙地恰好用小亮騎自行車以的速度直接到甲地,兩人離甲地的路程與各自離開出發(fā)地的時間之間的函數圖象如圖所示,

甲、乙兩地之間的路程為______m,小明步行的速度為______;

求小亮離甲地的路程y關于x的函數表達式,并寫出自變量x的取值范圍;

求兩人相遇的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關于時間t(分鐘)的函數圖像如圖所示.

(1)甲的速度是 米/分鐘;

(2)當20≤t ≤30時,求乙離景點A的路程s與t的函數表達式;

(3)乙出發(fā)后多長時間與甲在途中相遇?

(4)若當甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數圖象如圖所示,根據圖象所提供的信息解答下列問題:

(1)甲登山上升的速度是每分鐘   米,乙在A地時距地面的高度b   米;

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數關系式;

(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A在第二象限,以A為頂點的拋物線經過原點,與x軸負半軸交于點B,對稱軸為直線x=-2,點C在拋物線上,且位于點A、B之間(C不與A、B重合).若ABC的周長為a,則四邊形AOBC的周長為________(用含a的式子表示)

查看答案和解析>>

同步練習冊答案