【題目】拓展題,如圖所示,其中同旁內(nèi)角有多少對?
【答案】見解析
【解析】
依據(jù)同旁內(nèi)角的定義結(jié)合圖形即可求得答案,注意要按一定的順序依次尋找,不要重復(fù),不要遺漏.
AD,EF被AB所截得的同旁內(nèi)角是∠A與∠AEF;AD,EF被CD所截得的同旁內(nèi)角是∠D與∠DFE;EF,BC被AB所截得的同旁內(nèi)角是∠FEB與∠B;EF,BC被CD所截得的同旁內(nèi)角是∠EFC與∠C;AB,CD被AD所截得的同旁內(nèi)角是∠A與∠D;AB,CD被EF所截得的同旁內(nèi)角是∠AEF與∠DFE,∠BEF與∠EFC;AB,CD被BC所截得的同旁內(nèi)角是∠B與∠C;AD,BC被AB所截得的同旁內(nèi)角是∠A與∠B;AD,BC被CD所截得的同旁內(nèi)角是∠D與∠C,故同旁內(nèi)角共有10對.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A路口的交通信號燈依次顯示為紅燈亮20秒,綠燈亮40秒,再紅燈亮20秒,綠燈亮40秒,如此連續(xù)不斷循環(huán)顯示下去…
(1)求A路口顯示紅燈的概率.
(2)小亮上班路上會遇到A,B兩個路口,B路口紅綠燈的顯示方式和A路口完全相同,求他在上班路上兩次都遇到紅燈的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(1,1),B(4,0),C(4,4).
(1)按下列要求作圖:
①將△ABC向左平移4個單位,得到△A1B1C1;
②將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°,得到△A2B2C2 .
(2)求點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按照有關(guān)規(guī)定:距高鐵軌道 200米以內(nèi)的區(qū)域內(nèi)不宜臨路新建學(xué)校、醫(yī)院、敬老院和集中住宅區(qū)等噪聲敏感建筑物.
如圖是一個小區(qū)平面示意圖,矩形ABEF為一新建小區(qū),直線MN為高鐵軌道,C、D是直線MN上的兩點,點C、A、B在一直線上,且DA⊥CA,∠ACD=30°.小王看中了①號樓A單元的一套住宅,與售樓人員的對話如下:
(1)小王心中一算,發(fā)現(xiàn)售樓人員的話不可信,請你用所學(xué)的數(shù)學(xué)知識說明理由;
(2)若一列長度為228米的高鐵以252千米/小時的速度通過時,則A單元用戶受到影響時間有多長?
(溫馨提示: ≈1.4, ≈1.7, ≈6.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,(1)∠BED與∠CBE是直線________,________被直線________所截形成的________角;
(2)∠A與∠CED是直線________,________被直線________所截形成的________角;
(3)∠CBE與∠BEC是直線________,________被直線________所截形成的________角;
(4)∠AEB與∠CBE是直線________,________被直線________所截形成的________角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】做大小兩個長方體紙盒,尺寸如下(單位:cm)
(1)做這兩個紙盒共用料多少cm2?
(2)做大紙盒比做小紙盒多用料多少cm2?
(3)如果a=8,b=6,c=5,將24個小紙盒包裝成一個長方體,這個長方體的表面積的最小值為________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線l1;y=ax2+bx+c(a<0)經(jīng)過原點,與x軸的另一個交點為B(4,0),點A為頂點,且直線OA的解析式為y=x.
(1)如圖1,求拋物線l1的解析式;
(2)如圖2,將拋物線l1繞原點O旋轉(zhuǎn)180°,得到拋物線l2 , l2與x軸交于點B′,頂點為A′,點P為拋物線l1上一動點,連接PO交l2于點Q,連接PA、PA′、QA′、QA.
請求:平行四邊形PAQA′的面積S與P點橫坐標(biāo)x(2<x≤4)之間的關(guān)系式;
(3)在(2)的條件下,如圖11﹣3,連接BA′,拋物線l1或l2上是否存在一點H,使得HB=HA′?若存在,請求出點H的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC為對角線,點E、F分別是邊BC、AD的中點.
(1)求證:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y= x﹣2與x、y軸分別交于點A、C.拋物線的圖象經(jīng)過A、C和點B(1,0).
(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動點D,當(dāng)D與直線AC的距離DE最大時,求出點D的坐標(biāo),并求出最大距離是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com