【題目】已知:如圖,一塊RtABC的綠地,量得兩直角邊AC=8cm,BC=6cm.現(xiàn)在要將這塊綠地擴(kuò)充成等腰△ABD,且擴(kuò)充部分(△ADC)是以8cm為直角邊長的直角三角形,求擴(kuò)充等腰△ABD的周長.

1)在圖1中,當(dāng)AB=AD=10cm時,△ABD的周長為

2)在圖2中,當(dāng)BA=BD=10cm時,△ABD的周長為

3)在圖3中,當(dāng)DA=DB時,求△ABD的周長.

【答案】132m;(2)(20+4m;(3

【解析】

1)利用勾股定理得出DC的長,進(jìn)而求出ABD的周長;
2)利用勾股定理得出AD的長,進(jìn)而求出ABD的周長;
3)首先利用勾股定理得出DC、AB的長,進(jìn)而求出ABD的周長.

:(1)如圖1,∵AB=AD=10mACBD,AC=8m

ABD的周長為:10+10+6+6=32m).
故答案為:32m;
2)如圖2,當(dāng)BA=BD=10m時,
DC=BD-BC=10-6=4m),

ABD的周長為:AD+AB+BD=10+4+10=20+4m;
故答案為:(20+4m

3)如圖3,∵DA=DB,
∴設(shè)DC=xm,則AD=6+xm,
DC2+AC2=AD2,
x2+82=6+x2
解得;x=
AC=8m,BC=6m,
AB=10m,
ABD的周長為:AD+BD+AB=2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】創(chuàng)衛(wèi)工作人人參與,環(huán)境衛(wèi)生人人受益,我區(qū)創(chuàng)衛(wèi)工作已進(jìn)入攻堅階段某校擬整修學(xué)校食堂,現(xiàn)需購買A、B兩種型號的防滑地磚共60塊,已知A型號地磚每塊80元,B型號地磚每塊40元

1若采購地磚的費用不超過3200元,那么,最多能購買A型號地磚多少塊?

2某地磚供應(yīng)商為了支持創(chuàng)衛(wèi)工作,現(xiàn)將A、B兩種型號的地磚單價都降低a%,這樣,該;ㄙM了2560元就購得所需地磚,其中A型號地磚a塊,求a的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(a﹣1x2+2x+a﹣1=0

1)若該方程有一根為2,求a的值及方程的另一根;

2)當(dāng)a為何值時,方程僅有一個根?求出此時a的值及方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過點AAMBD于點M,過點DDNAB于點N,且DN=,在DB的延長線上取一點P,滿足∠ABD=MAP+PAB,則AP=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,ABCBAD的度數(shù)比為12,周長是8cm

求:(1)兩條對角線的長度;(2)菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有( 。

1)有理數(shù)分為正有理數(shù)和負(fù)有理數(shù)

2)如果|a|a,那么a0

3)如果a大于b,那么a的倒數(shù)小于b的倒數(shù)

4)若ab0,則的值為3或﹣3

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知張強家、體育場、文具店在同一直線上,下面的圖象反映的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后又走到文具店去買筆,然后散步走回家.圖中表示時間,表示張強離家的距離.

根據(jù)圖象解答下列問題:

1)體育場離張強家多遠(yuǎn)?張強從家到體育場用了多少時間?

2)體育場離文具店多遠(yuǎn)?

3)張強在文具店停留了多少時間?

4)求張強從文具店回家過程中的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A60°,點E、F分別為AD、DC上的動點,∠EBF=60°,點E從點A向點D運動的過程中,AECF的長度(

A. 逐漸增加 B. 逐漸減小

C. 保持不變且與EF的長度相等 D. 保持不變且與AB的長度相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AC是直徑,BC=BA,在∠ACB的內(nèi)部作∠ACF=30°,且CF=CA,過點FFHAC于點H,連接BF

1)若CF交⊙O于點G,O的半徑是4,求 的長;

2)請判斷直線BF與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案