【題目】如圖,△ABC內(nèi)接于⊙OAC是直徑,BC=BA,在∠ACB的內(nèi)部作∠ACF=30°,且CF=CA,過點FFHAC于點H,連接BF

1)若CF交⊙O于點G,O的半徑是4,求 的長;

2)請判斷直線BF與⊙O的位置關系,并說明理由.

【答案】(1)AG=4﹣4;(2)BF是⊙O的切線,理由見解析.

【解析】試題分析:(1)連接OG.由∠ACF=30°,得到∠AOG=60°,再由弧長公式求出的長即可;

(2)結論:BF是⊙O的切線.先證四邊形BOHF是平行四邊形,再證OBBF即可;

試題解析:(1)連結OG.∵∠ACF=30°,∴∠AOG=60°,∴==;

(2)結論:BF是⊙O的切線,

理由:∵AC是直徑,∴∠CBA=90°,∵BC=BA,OC=OA,∴OBAC,∵FHAC,∴OBFH,在Rt△CFH中,∵∠FCH=30°,∴FH=CF,∵CA=CF,∴FH=AC=OC=OA=OB,∴四邊形BOHF是平行四邊形,∵∠FHO=90°,∴四邊形BOHF是矩形,∴∠OBF=90°,∴OBBF,∴BF是⊙O的切線.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑長為R=5,弦AB 與弦CD平行,他們之間距離為7,AB=6求:弦CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系 xOy 中,已知點 A(0,3),點 B(0),連接 AB.若對于平 面內(nèi)一點 C,當△ABC 是以 AB 為腰的等腰三角形時,稱點 C 是線段 AB 的“等長點”

(1)在點 C1 (2, ),點 C2 (0,-2),點 C3 (, )中,線段 AB 的“等長點”是點______________;

(2)若點 D( m , n )是線段 AB 的“等長點”,且∠DAB60,求 m n 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A在數(shù)軸上表示的數(shù)是-2,點B到原點的距離等于3,則A、B兩點間的距離是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國最長的河流長江全長約6300千米,6300千米用科學記數(shù)法表示為(  )

A.6.3×102千米B.6.3×103千米

C.0.63×104千米D.630×10千米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】買一個籃球需要m元,買一個排球需要n元,則買1個籃球和2個排球共需_______元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式 4x212xy+10y2+4y12的最小值是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一件商品售價為72元,其獲得利潤是成本的20%,現(xiàn)在如果要把利潤提高到成本的30%,那么售價需提高到_____元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l x軸、y軸分別交于點M,N,高為3的等邊三角形ABC,邊BCx軸上,將此三角形沿著x軸的正方向平移,在平移過程中,得到A1B1C1,當點B1與原點重合時,解答下列問題:

1)求出點A1的坐標,并判斷點A1是否在直線l上;

2)求出邊A1C1所在直線的解析式;

3)在坐標平面內(nèi)找一點P,使得以P、A1C1、M為頂點的四邊形是平行四邊形,請直接寫出P點坐標.

查看答案和解析>>

同步練習冊答案