【題目】(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點.且BE+DF=EF.試求∠EAF度數.
小王同學探究此問題的方法是,延長FD到點G.使DG=BE.連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得求出∠EAF度數,他求出的∠EAF度數應是 .請你根據他的思路完成論證過程.
(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點,試探究當∠EAF與∠BAD滿足什么關系時有BE+DF=EF,并說明理由.
【答案】(1)60°;(2)當∠EAF=∠BAD時有BE+DF=EF,理由見解析.
【解析】
(1)延長FD到點G.使DG=BE.連結AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得∠EAF=∠GAF,即可解題;
(2)延長FD到點G.使DG=BE.連結AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得∠EAF=∠GAF,即可解題.
解:(1)在△ABE和△ADG中,,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵BE+DF=EF,
∴DG+DF=EF,即GF=EF,
在△AEF和△AGF中,,
∴△AEF≌△AGF(SSS),
∴∠EAF=∠GAF,
∴∠EAF=∠FAD+∠DAG,即∠EAF=∠FAD+∠BAE,
∴∠EAF=∠BAD=60°;
(2)當∠EAF=∠BAD時有BE+DF=EF,
理由:延長FD到點G,使DG=BE.連結AG,
∵∠B+∠ADF=180°,∠ADF+∠ADG=180°,
∴∠B=∠ADG,
在△ABE和△ADG中,,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵BE+DF=EF,
∴DG+DF=EF,即GF=EF,
在△AEF和△AGF中,,
∴△AEF≌△AGF(SSS),
∴∠EAF=∠GAF,
∴∠EAF=∠FAD+∠DAG,即∠EAF=∠FAD+∠BAE,
∴∠EAF=∠BAD,
∴當∠EAF=∠BAD時有BE+DF=EF.
科目:初中數學 來源: 題型:
【題目】一定能確定△ABC≌△DEF的條件是( )
A.AB=DE,BC=EF,∠A=∠DB.∠A=∠E,AB=EF,∠B=∠D
C.∠A=∠D,AB=DE,∠B=∠ED.∠A=∠D,∠B=∠E,∠C=∠F
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系xOy中,拋物線y=mx2﹣2m2x+2交y軸于A點,交直線x=4于B點.
(1)拋物線的對稱軸為x=_____(用含m的代數式表示);
(2)若AB∥x軸,求拋物線的表達式;
(3)記拋物線在A,B之間的部分為圖象G(包含A,B兩點),若對于圖象G上任意一點P(xp,yp),yp≤2,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某住宅小區(qū)在住宅建設時留下一塊1798平方米的矩形空地,準備建一個矩形的露天游泳池,設計圖如圖所示,游泳池的長是寬的2倍,在游泳池的前側留一塊5米寬的空地,其他三側各保留2米寬的道路及1米寬的綠化帶.
(1)請你計算出游泳池的長和寬;
(2)已知貼1平方米瓷磚需費用50元,若游泳池深3米,現要把池底和池壁(共5個面)都貼上瓷磚,共需要費用多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=30°,以AB為直徑的⊙O經過點C.過點C作⊙O的切線交AB的延長線于點P.點D為圓上一點,且BC=CD ,弦AD的延長線交切線PC于點E,連接BC.
(1)判斷OB和BP的數量關系,并說明理由;
(2)若⊙O的半徑為2,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一只不透明的袋子中裝有3個球,球上分別標有數字0,1,2,這些球除了數字外其余都相同,甲、以兩人玩摸球游戲,規(guī)則如下:先由甲隨機摸出一個球(不放回),再由乙隨機摸出一個球,兩人摸出的球所標的數字之和為偶數時則甲勝,和為奇數時則乙勝.
(1)用畫樹狀圖或列表的方法列出所有可能的結果;
(2)這樣的游戲規(guī)則是否公平?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內.當該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離(取1.73,結果精確到0.1千米)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使點C與點A重合,折痕EF分別與AB、DC交于點E和點F.
(1)試寫出圖中若干相等的線段和銳角(分別寫兩對);
(2)證明:△ADF≌△AB′E.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=12cm,BC=9cm,點D為AB的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B向C點運動,同時點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,當經過1秒時,△BPD與△CQP是否全等,請判斷并說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD≌△CPQ?
(2)若點Q以②的運動速度從點C出發(fā),點P以原來運動速度從點B同時出發(fā),都逆時針沿△ABC的三邊運動,求經過多長時間,點P與點Q第一次在△ABC的哪條邊上會相遇?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com