【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離(取1.73,結(jié)果精確到0.1千米)
科目:初中數(shù)學 來源: 題型:
【題目】某博物館每周都吸引大量中外游客前來參觀,如果游客過多,對館中的珍貴文物會產(chǎn)生不利影響,但同時考慮到文物的修繕和保存費用問題,還要保證一定的門票收入,因此,博物館采取了漲浮門票價格的方法來控制參觀人數(shù),在該方法實施過程中發(fā)現(xiàn):每周參觀人數(shù)與票價之間存在著如圖所示的一次函數(shù)關系.在這種情況下,如果要保證每周萬元的門票收入,那么每周應限定參觀人數(shù)是多少?門票價格應是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖以△ABC的一邊AB為直徑作⊙O,⊙O與BC邊的交點D恰好為BC的中點,過點D作⊙O的切線交AC邊于點F.
(1)求證:DF⊥AC;
(2)若∠ABC=30°,求tan∠BCO的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形中,延長至使,以為邊作正方形,延長交于,連接,,為的中點,連接分別與,交于點.則下列說法:①;②;③;④.其中正確的有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過70千米小時,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面對車速檢測儀A的正前方60米處的C點,過了5秒后,測得小汽車所在的B點與車速檢測儀A之間的距離為100米.
求BC間的距離;這輛小汽車超速了嗎?請說明理由.
【答案】這輛小汽車沒有超速.
【解析】
(1)根據(jù)勾股定理求出BC的長;
(2)直接求出小汽車的時速,進行比較得出答案.
(1)在Rt△ABC中,AC=60 m,
AB=100 m,且AB為斜邊,根據(jù)勾股定理,得BC=80 m.
(2)這輛小汽車沒有超速.
理由:∵80÷5=16(m/s),
而16 m/s=57.6 km/h,57.6<70,
∴這輛小汽車沒有超速.
【點睛】
考查勾股定理的應用,熟練掌握勾股定理是解題的關鍵.
【題型】解答題
【結(jié)束】
19
【題目】已知:如圖,線段AC和BD相交于點G,連接AB,CD,E是CD上一點,F是DG上一點,,且.
求證:;若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=-1,給出四個結(jié)論:①b2>4ac;②2a+b=0;③a+b+c>0;④若點B(-,y1),C(-,y2)為函數(shù)圖象上的兩點,則y1<y2.其中正確結(jié)論是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=8,點E、F分別在AD和AB上,AE=3,AF=4.
(1)點P在邊BC上運動、四邊形EFPH是平行四邊形,連接DH.
①當四邊形FPHE是菱形時,線段BP=_____;
②當點P在邊BC上運動時,△DEH的面積會不會變化?若變化,求其最大值;若不變,求出它的值;
③當△DEH是等腰三角形時,求BP的長;
(2)若點E沿E-D-C向終點C運動,點F沿F-B-C終點C運動,速度分別為每秒3個單位長度和每秒4個單位長度,當其中一個點到達終點C時,另一個點也停止運動,求EF的中點O的運動路徑長(要求寫出簡略的計算過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解下列方程
(1)25x2+10x+1=0(公式法) (2) 7x2 -23x +6=0;(配方法)
(3) (分解因式法) (4)x2-4x-396=0(適當?shù)姆椒ǎ?/span>
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com