【題目】如圖,在矩形中,于,,,則的面積是( )
A.
B.
C.
D.
【答案】C
【解析】
過點C作CF⊥BD于F,根據矩形的性質可得AE=CF,利用勾股定理列式求出BD,然后利用△ABD的面積列式求出AE,再根據勾股定理求出DE,然后利用三角形的面積列式計算即可得解.
過點C作CF⊥BD于F.
∵AE⊥BD,∴∠AEB=∠CFD=90°.
∵ABCD是矩形,∴AB=CD,AB∥DC,∴∠ABD=∠CDF,∴△ABE≌△CDF,∴AE=CF,在矩形ABCD中,AD=BC=3,∠BAD=90°,由勾股定理得:BD===2.
∵AE⊥BD,∴S△ABD=×2AE=×3×,解得:AE=.在Rt△AED中,由勾股定理得:DE==,所以,△DEC的面積=××=.
故選C.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.
(1)若∠BAC=50°,求∠EDA的度數;
(2)求證:直線AD是線段CE的垂直平分線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,A(m,n+1),B(m+2,n).
(1)當m=1,n=2時.如圖1,連接AB、AO、BO.直接寫出△ABO的面積為 .
(2)如圖2,若點A在第二象限、點B在第一象限,連接AB、AO、BO,AB交y軸于H,△ABO的面積為2.求點H的坐標.
(3)若點A、B在第一象限,在y 軸正半軸上存在點C,使得∠CAB=900,且CA=AB,求m的值,及OC的長(用含n的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“丹棱凍粑”是眉山著名特色小吃,產品暢銷省內外,現(xiàn)有一個產品銷售點在經銷時發(fā)現(xiàn):如果每箱產品盈利10元,每天可售出50箱;若每箱產品漲價1元,日銷售量將減少2箱.
(1)現(xiàn)該銷售點每天盈利600元,同時又要顧客得到實惠,那么每箱產品應漲價多少元?
(2)若該銷售點單純從經濟角度考慮,每箱產品應漲價多少元才能獲利最高?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點,連接DE并延長交CB的延長線于點F,點M在BC邊上,且∠MDF=∠ADF。
(1)求證:△ADE≌△BFE;
(2)如果FM=CM,求證:EM垂直平分DF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,并完成任務。
箏形的定義:兩組鄰邊分別相等的四邊形叫做箏形,幾何圖形的定義通常可作為圖形的性質也可以作為圖形的判定方法.也就是說,如圖,若四邊形ABCD是一個箏形,則AB=AD,BC=CD;若AB=AD,BC=CD,則四邊形ABCD是箏形.
如圖,四邊形ABCD是一個箏形,其中AB=AD,BC=CD.對角線AC,BD相交于點O,過點0作0M⊥AB,ON⊥AD,垂足分別為M,N.求證:四邊形AMON是箏形.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com