【題目】李叔叔和張阿姨栽樹.李叔叔栽6棵樹所用的時間與張阿姨栽5棵樹所用的時間相同,已知李叔叔比張阿姨平均每天多栽20棵樹.
(1)求李叔叔平均每天栽樹的棵數(shù);
(2)由李叔叔和張阿姨同時栽樹1540棵,要幾天完成?
【答案】(1)李叔叔平均每天栽樹120棵;(2)由李叔叔和張阿姨同時栽樹1540棵,要7天完成.
【解析】
(1)設(shè)李叔叔平均每天栽樹棵,則張阿姨平均每天栽樹()棵,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;
(2)由第一問求出的李叔叔平均每天栽樹的棵數(shù),得到張阿姨平均每天栽樹的棵數(shù),根據(jù)工作總量除以工作效率=工作時間,求出即可.
(1)設(shè)李叔叔平均每天栽樹x棵,則張阿姨平均每天栽樹()棵,
根據(jù)題意得:,
解得:x=120,
經(jīng)檢驗,x=120是原分式方程的解.
答:李叔叔平均每天栽樹120棵;
(2)1540÷(120+100)=7(天).
答:由李叔叔和張阿姨同時栽樹1540棵,要7天完成.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形 ABCD 中,∠A=∠B= 90°,點 E 在邊 AB 上,點 F 在 AD 的延長線上,且 點 E 與點 F 關(guān)于直線 CD 對稱,過點 E 作 EG∥AF 交 CD 于點 G,連接 FG,DE.
(1)求證:四邊形 DEGF 是菱形;
(2)若 AB=10,AF=BC=8,求四邊形 DEGF 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知點為正方形的對角線的交點,點是對角線上的一個動點(點不與重合),分別過點向直線作垂線,垂足分別為點,連接和.
(1)求證:;
(2)如圖②,延長正方形對角線,當(dāng)點運動到的延長線上時,通過證明判斷(1)中的結(jié)論是否仍然成立;
(3)若點在射線上運動,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖乙,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點.
(1)如圖甲,將△ADE繞點A旋轉(zhuǎn),當(dāng)C、D、E在同一條直線上時,連接BD、BE,則下列給出的四個結(jié)論中,其中正確的是哪幾個 .(回答直接寫序號)
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)
(2)若AB=6,AD=3,把△ADE繞點A旋轉(zhuǎn):
①當(dāng)∠CAE=90°時,求PB的長;
②直接寫出旋轉(zhuǎn)過程中線段PB長的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前世界上最高的電視塔是廣州新電視塔.如圖所示,新電視塔高AB為610米,遠處有一棟大樓,某人在樓底C處測得塔頂B的仰角為45°,在樓頂D處測得塔頂B的仰角為39°.
(1)求大樓與電視塔之間的距離AC;
(2)求大樓的高度CD(精確到1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,點B坐標(biāo)為(3,0),對稱軸為直線x=1.下列結(jié)論正確的是( )
A.abc<0B.b2<4ac
C.a+b+c>0D.當(dāng)y<0時,﹣1<x<3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合與實踐﹣﹣探究圖形中角之間的等量關(guān)系及相關(guān)問題.
問題情境:
正方形ABCD中,點P是射線DB上的一個動點,過點C作CE⊥AP于點E,點Q與點P關(guān)于點E對稱,連接CQ,設(shè)∠DAP=α(0°<α<135°),∠QCE=β.
初步探究:
(1)如圖1,為探究α與β的關(guān)系,勤思小組的同學(xué)畫出了0°<α<45°時的情形,射線AP與邊CD交于點F.他們得出此時α與β的關(guān)系是β=2α.借助這一結(jié)論可得當(dāng)點Q恰好落在線段BC的延長線上(如圖2)時,α= °,β= °;
深入探究:
(2)敏學(xué)小組的同學(xué)畫出45°<α<90°時的圖形如圖3,射線AP與邊BC交于點G.請猜想此時α與β之間的等量關(guān)系,并證明結(jié)論;
拓展延伸:
(3)請你借助圖4進一步探究:①當(dāng)90°<α<135°時,α與β之間的等量關(guān)系為 ;
②已知正方形邊長為2,在點P運動過程中,當(dāng)α=β時,PQ的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為等邊△ABC的外接圓,AD∥BC,∠ADC=90°,CD交⊙O于點E.
(1)求證:AD是⊙O的切線;
(2)若DE=2,求陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com