【題目】圖1、圖2為同一長方體房間的示意圖,圖3為該長方體的表面展開圖.
(1)蜘蛛在頂點A′處. ①蒼蠅在頂點B處時,試在圖1中畫出蜘蛛為捉住蒼蠅,沿墻面爬行的最近路線.
②蒼蠅在頂點C處時,圖2中畫出了蜘蛛捉住蒼蠅的兩條路線,往天花板ABCD爬行的最近路線A′GC和往墻面BB′C′C爬行的最近路線A′HC,試通過計算判斷哪條路線更近.
(2)在圖3中,半徑為10dm的⊙M與D′C′相切,圓心M到邊CC′的距離為15dm,蜘蛛P在線段AB上,蒼蠅Q在⊙M的圓周上,線段PQ為蜘蛛爬行路線,若PQ與⊙M相切,試求PQ長度的范圍.
【答案】
(1)解:①根據(jù)“兩點之間,線段最短”可知:
線段A′B為最近路線,如圖1所示.
②(i).將長方體展開,使得長方形ABB′A′和長方形ABCD在同一平面內(nèi),如圖2①.
在Rt△A′B′C中,
∠B′=90°,A′B′=40,B′C=60,
∴AC= = =20 .
(ii).將長方體展開,使得長方形ABB′A′和長方形BCC′B′在同一平面內(nèi),如圖2②.
在Rt△A′C′C中,
∠C′=90°,A′C′=70,C′C=30,
∴A′C= = =10 .
∵ < ,
∴往天花板ABCD爬行的最近路線A′GC更近
(2)解:過點M作MH⊥AB于H,連接MQ、MP、MA、MB,如圖3.
∵半徑為10dm的⊙M與D′C′相切,圓心M到邊CC′的距離為15dm,BC′=60dm,
∴MH=60﹣10=50,HB=15,AH=40﹣15=25,
根據(jù)勾股定理可得AM= = = ,
MB= = = ,
∴50≤MP≤ .
∵⊙M與PQ相切于點Q,
∴MQ⊥PQ,∠MQP=90°,
∴PQ= = .
當MP=50時,PQ= =20 ;
當MP= 時,PQ= =55.
∴PQ長度的范圍是20 dm≤PQ≤55dm
【解析】(1)①根據(jù)“兩點之間,線段最短”可知:線段A′B為最近路線; ②(i).將長方體展開,使得長方形ABB′A′和長方形ABCD在同一平面內(nèi),如圖2①,運用勾股定理求出AC長;(ii).將長方體展開,使得長方形ABB′A′和長方形BCC′B′在同一平面內(nèi),如圖2②,運用勾股定理求出A′C長,然后將兩個長度進行比較,就可解決問題;(2)過點M作MH⊥AB于H,連接MQ、MP、MA、MB,如圖3.由⊙M與PQ相切于點Q可得MQ⊥PQ,即∠MQP=90°,根據(jù)勾股定理可得PQ= = .要求PQ的取值范圍,只需先求出MP的取值范圍,就可解決問題.
【考點精析】關于本題考查的幾何體的展開圖和線段的基本性質(zhì),需要了解沿多面體的棱將多面體剪開成平面圖形,若干個平面圖形也可以圍成一個多面體;同一個多面體沿不同的棱剪開,得到的平面展開圖是不一樣的,就是說:同一個立體圖形可以有多種不同的展開圖;線段公理:所有連接兩點的線中,線段最短.也可簡單說成:兩點之間線段最短;連接兩點的線段的長度,叫做這兩點的距離;線段的大小關系和它們的長度的大小關系是一致的才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】某周日上午8:00小宇從家出發(fā),乘車1小時到達某活動中心參加實踐活動.11:00時他在活動中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/小時的平均速度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設小宇離家x(小時)后,到達離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關系.
(1)活動中心與小宇家相距千米,小宇在活動中心活動時間為小時,他從活動中心返家時,步行用了小時;
(2)求線段BC所表示的y(千米)與x(小時)之間的函數(shù)關系式(不必寫出x所表示的范圍);
(3)根據(jù)上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點,與y軸交于點C.
(1)求拋物線的函數(shù)表達式;
(2)若點D是y軸上的一點,且以B,C,D為頂點的三角形與△ABC相似,求點D的坐標;
(3)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別交于點F,G,試探究當點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標及最大面積;
(4)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQKM的周長最小,求出點P,Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設甲、乙兩人相距s(米),甲行走的時間為t(分),s關于t的函數(shù)圖象的一部分如圖所示.
(1)求甲行走的速度;
(2)在坐標系中,補畫s關于t的函數(shù)圖象的其余部分;
(3)問甲、乙兩人何時相距360米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABC1D1的邊長為1,延長C1D1到A1 , 以A1C1為邊向右作正方形A1C1C2D2 , 延長C2D2到A2 , 以A2C2為邊向右作正方形A2C2C3D3(如圖所示),以此類推….若A1C1=2,且點A,D2 , D3 , …,D10都在同一直線上,則正方形A9C9C10D10的邊長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段.在連接兩點所得的所有線段中任取一條線段,取到長度為 的線段的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+c與x軸交于A,B兩點,它的對稱軸與x軸交于點N,過頂點M作ME⊥y軸于點E,連結(jié)BE交MN于點F,已知點A的坐標為(﹣1,0).
(1)求該拋物線的解析式及頂點M的坐標.
(2)求△EMF與△BNF的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AC與BD交于O點,DO:BO=1:2,點E在CB的延長線上,如果S△AOD:S△ABE=1:3,那么BC:BE= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com