【題目】如圖:△ABC中,AB=AC,內(nèi)切圓⊙O與邊BC、AB分別切于點(diǎn)D、E、F,若∠C=30°,CE=2 ,則AC=

【答案】4
【解析】解:連接AO、OD;
∵O是△ABC的內(nèi)心,
∴OA平分∠BAC,
∵⊙O是△ABC的內(nèi)切圓,D是切點(diǎn),
∴OD⊥BC;
又∵AC=AB,
∴A、O、D三點(diǎn)共線(xiàn),即AD⊥BC,
∵CD、CE是⊙O的切線(xiàn),
∴CD=CE=2 ,
∵∠C=30°,CE=2 ,
∴CA= =4,
所以答案是:4.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等腰三角形的性質(zhì)(等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角)),還要掌握含30度角的直角三角形(在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AC為對(duì)角線(xiàn),AC=BC=5,AB=6,AE是△ABC的中線(xiàn).

(1)用無(wú)刻度的直尺畫(huà)出△ABC的高CH(保留畫(huà)圖痕跡);
(2)求△ACE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)質(zhì)地均勻的小正方體,六個(gè)面分別標(biāo)有數(shù)字“1”“2”“3”“4”“5”“6”.連續(xù)兩次拋擲小正方體,觀(guān)察每次朝上一面的數(shù)字.
(1)請(qǐng)用列表格或畫(huà)樹(shù)狀圖的方法列舉出兩次拋擲的所有可能結(jié)果;
(2)求出第二次拋擲的數(shù)字大于第一次拋擲的數(shù)字的概率;
(3)求兩次拋擲的數(shù)字之和為5的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=ax2﹣2x+1和y=ax+a(a是常數(shù),且a≠0)在同一直角坐標(biāo)系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是(
A.10π
B.15π
C.20π
D.30π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某電信部門(mén)計(jì)劃修建一條連接B、C兩地的電纜.測(cè)量人員在山腳A點(diǎn)測(cè)得B、C兩地的仰角分別為30°、45°,在B地測(cè)得C地的仰角為60°.已知C地比A地高200m,電纜BC至少長(zhǎng)多少米(精確到1m)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=6,AD為BC邊上的高,過(guò)點(diǎn)A作AE∥BC,過(guò)點(diǎn)D作DE∥AC,AE與DE交于點(diǎn)E,AB與DE交于點(diǎn)F,連結(jié)BE.求四邊形AEBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以線(xiàn)段AC為對(duì)角線(xiàn)的四邊形ABCD(它的四個(gè)頂點(diǎn)A、B、C、D按順時(shí)針?lè)较蚺帕校,已知AB=BC=CD,∠ABC=100°,∠CAD=40°;則∠BCD的大小為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某倉(cāng)儲(chǔ)中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上.

(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長(zhǎng)方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5m時(shí),求點(diǎn)D離地面的高.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案