【題目】在如圖所示的方格圖中,我們稱每個小正方形的頂點(diǎn)為“格點(diǎn)”,以格點(diǎn)為頂點(diǎn)的三角形叫做“格點(diǎn)三角形”,根據(jù)圖形,回答下列問題.
(1)圖中格點(diǎn)三角形A′B′C′是由格點(diǎn)三角形ABC通過怎樣的平移得到的?
(2)如果以直線a,b為坐標(biāo)軸建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(-3,4),請寫出格點(diǎn)三角形DEF各頂點(diǎn)的坐標(biāo),并求出三角形DEF的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校初一某班學(xué)生的平均體重是45公斤.
(1)下表給出了該班6位同學(xué)的體重情況(單位:公斤),完成下表
姓 名 | 小麗 | 小華 | 小明 | 小方 | 小穎 | 小寶 |
體 重 | 37 | 50 | 40 |
| 36 | 48 |
體重與平均體重的差值 | ﹣8 | +5 |
| +2 |
|
|
(2)最重的與最輕的同學(xué)的體重相差多少?
(3)這6位同學(xué)的平均體重是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災(zāi),“旱災(zāi)無情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來;
(3)在(2)的條件下,如果甲種貨車每輛需付運(yùn)費(fèi)400元,乙種貨車每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)D,E,BD=CD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求的長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E,連接BD,CD.
(1)求證:BD=CD;
(2)請判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓C過原點(diǎn)并與坐標(biāo)軸分別交于A、D兩點(diǎn),已知點(diǎn)B為圓C圓周上一動點(diǎn),且∠ABO=30°,點(diǎn)D的坐標(biāo)為(0,2).
(1)直接寫出圓心 C 的坐標(biāo);
(2)當(dāng)△BOD為等邊三角形時,求點(diǎn)B的坐標(biāo);
(3)若以點(diǎn)B為圓心、r為半徑作圓B,當(dāng)圓B與兩個坐標(biāo)軸同時相切時,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),且DG⊥CE,垂足為點(diǎn)G.
(1)求證:DC=BE;
(2)若∠AEC=54°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙是的外接圓,半徑為,直線與⊙相切,切點(diǎn)為,,與間的距離為.
()僅用無刻度的直尺,畫出一條弦,使這條弦將分成面積相等的兩部分(保留作圖痕跡,不寫畫法).
()求弦的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA=2,OB=3,現(xiàn)同時將點(diǎn)A,B分別向上平移2個單位,再向右平移2個單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接AC,BD.
(1)求點(diǎn)C、D的坐標(biāo)及四邊形ABDC的面積;
(2)若點(diǎn)Q在線的CD上移動(不包括C,D兩點(diǎn)).QO與線段AB,CD所成的角∠1與∠2如圖所示,給出下列兩個結(jié)論:①∠1+∠2的值不變;②的值不變,其中只有一個結(jié)論是正確的,請你找出這個結(jié)論,并求出這個值.
(3)在y軸正半軸上是否存在點(diǎn)P,使得S△CDP=S△PBO?如果有,試求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com