【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災(zāi),“旱災(zāi)無情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運往該鄉(xiāng)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運輸部門安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來;
(3)在(2)的條件下,如果甲種貨車每輛需付運費400元,乙種貨車每輛需付運費360元.運輸部門應(yīng)選擇哪種方案可使運費最少?最少運費是多少元?
【答案】
【1】飲用水200件 蔬菜120件
【2】甲 4乙4, 甲 3乙5, 甲 2乙6
【3】2960
【解析】試題分析:(1)關(guān)系式為:飲用水件數(shù)+蔬菜件數(shù)=320;
(2)關(guān)系式為:40×甲貨車輛數(shù)+20×乙貨車輛數(shù)≥200;10×甲貨車輛數(shù)+20×乙貨車輛數(shù)≥120;
(3)分別計算出相應(yīng)方案,比較即可.
試題解析:(1)設(shè)飲用水有x件,則蔬菜有(x﹣80)件.
x+(x﹣80)=320,
解這個方程,得x=200.
∴x﹣80=120.
答:飲用水和蔬菜分別為200件和120件;
(2)設(shè)租用甲種貨車m輛,則租用乙種貨車(8﹣m)輛.得:
,
解這個不等式組,得2≤m≤4.
∵m為正整數(shù),
∴m=2或3或4,安排甲、乙兩種貨車時有3種方案.
設(shè)計方案分別為:
①甲車2輛,乙車6輛;②甲車3輛,乙車5輛;③甲車4輛,乙車4輛;
(3)3種方案的運費分別為:
①2×400+6×360=2960(元);
②3×400+5×360=3000(元);
③4×400+4×360=3040(元);
∴方案①運費最少,最少運費是2960元.
答:運輸部門應(yīng)選擇甲車2輛,乙車6輛,可使運費最少,最少運費是2960元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
一般地,當(dāng)α、β為任意角時,tan(α+β)與tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.
例如:tan15°=tan(45°﹣30°)== =
= =.
根據(jù)以上材料,解決下列問題:
(1)求tan75°的值;
(2)都勻文峰塔,原名文筆塔,始建于明代萬歷年間,系五層木塔,文峰塔的木塔年久傾毀,僅存塔基,1983年,人民政府撥款維修文峰塔,成為今天的七層六面實心石塔(圖1),小華想用所學(xué)知識來測量該鐵搭的高度,如圖2,已知小華站在離塔底中心A處5.7米的C處,測得塔頂?shù)难鼋菫?/span>75°,小華的眼睛離地面的距離DC為1.72米,請幫助小華求出文峰塔AB的高度.(精確到1米,參考數(shù)據(jù)≈1.732, ≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:
①A,B兩城相距300千米;
②乙車比甲車晚出發(fā)1小時,卻早到1小時;
③乙車出發(fā)后2.5小時追上甲車;
④當(dāng)甲、乙兩車相距50千米時,t=或.
其中正確的結(jié)論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在如圖所示的平面直角坐標(biāo)系中表示下面各點:A(0,3);B(5,0);C(3,-5);D(-3,-5);E(3,5);
(2)連接CE,則直線CE與y軸是什么位置關(guān)系?
(3)點D分別到x、y軸的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了了解本校學(xué)生參加課外體育鍛煉情況,隨機(jī)抽取本校40名學(xué)生進(jìn)行問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖:
根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況統(tǒng)計圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為 ;“經(jīng)常參加課外體育鍛煉的學(xué)生最喜歡的一種項目”中,喜歡足球的人數(shù)有 人,補(bǔ)全條形統(tǒng)計圖.
(2)該校共有1200名學(xué)生,請估計全校學(xué)生中經(jīng)常參加課外體育鍛煉并喜歡的項目是乒乓球的人數(shù)有多少人?
(3)若在“乒乓球”、“籃球”、“足球”、“羽毛球”項目中任選兩個項目成立興趣小組,請用列表法或畫樹狀圖的方法求恰好選中“乒乓球”、“籃球”這兩個項目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax﹣a為拋物線(a、b、c為常數(shù),a≠0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.
已知拋物線與其“夢想直線”交于A、B兩點(點A在點B的左側(cè)),與x軸負(fù)半軸交于點C.
(1)填空:該拋物線的“夢想直線”的解析式為 ,點A的坐標(biāo)為 ,點B的坐標(biāo)為 ;
(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標(biāo);
(3)當(dāng)點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)對平面圖形進(jìn)行了自主探究:圖形的頂點數(shù) V,被分成的區(qū)域數(shù) F,線段數(shù) E 三者之間是否存在確定的數(shù)量關(guān)系.如圖是他在探究時畫出的 5 個圖形:
(1)根據(jù)上圖完成下表:
(2)猜想:一個平面圖形中頂點數(shù) V,區(qū)域數(shù) F,線段數(shù) E 之間的數(shù)量關(guān)系是 ;
(3)計算:已知一個平面圖形有 24 條線段,被分成 9 個區(qū)域,則這個平面圖形的頂點有 個;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com