【題目】若點A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+a上的三點,則y1 , y2 , y3的大小關系為( )
A.y3>y1>y2
B.y1>y3>y2
C.y3>y2>y1
D.y1>y2>y3

【答案】D
【解析】∵在點A(﹣2,y1),B(1,y2),C(2,y3)中,它們的橫坐標分別為:-2、1、2,

∴這三個點到拋物線 的對稱軸直線 的距離由近到遠依次是點A、B、C,

又∵拋物線開口方向向下,

.

所以答案是:D.

【考點精析】認真審題,首先需要了解二次函數(shù)的圖象(二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點),還要掌握二次函數(shù)的性質(zhì)(增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為節(jié)約能源,某單位按以下規(guī)定收取每月電費:用電不超過140度,按每度元收費,如果超過140度,超過部分按每度元收費.

若某住戶六月份的用電量是130度,該用戶六月份應繳多少電費?

若該住戶七月份的用電量是200度,該用戶七月份應繳多少電費?

若某住戶十月份的用電量是a度,該用戶十月份應繳多少電費?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,六邊形的內(nèi)角都相等,,則下列結論成立的個數(shù)是

;④四邊形是平行四邊形;⑤六邊形 即是中心對稱圖形,又是軸對稱圖形(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y= y=﹣kx2+kk≠0)在同一直角坐標系中的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的5×8方格中,△ABC的頂點都在格點上.

(1)在給定的方格中,以直線AB為對稱軸,畫出△ABC的軸對稱圖形△ABD.
(2)求sin∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的做法是這樣的:如圖.

1)在的內(nèi)部任取一個點E,過點EEMOB;

2)在邊上取一點N,作NFOA于點N,且NF=EM;

3)過點E作直線l1OB,過點F作直線l2OAl1 l2交于點;

4)畫射線

則射線的平分線.

根據(jù)小明的畫法回答下面的問題:

1)小明作l1OB,l2OA的目的是___________________________________________;

2l1 l2交于點,則射線的平分線的依據(jù)是__________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A在拋物線y=x2﹣2x+4上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結BD,則對角線BD的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABAC,∠BAC=56°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合,則∠OEC_____度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,對△ABC進行循環(huán)反復的軸對稱或中心對稱變換,若原來點A的坐標是(a,b),則經(jīng)過第2018次變換后所得的A點坐標是_____

查看答案和解析>>

同步練習冊答案