【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點A0,1),B3,2),C1,4)均在正方形網(wǎng)格的格點上

1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;

2)將△A1B1C1沿x軸方向向左平移3個單位后得到△A2B2C2,寫出頂點A2,B2,C2的坐標(biāo)

【答案】(1)答案見解析;(2)A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).

【解析】

試題分析:(1)直接利用關(guān)于x軸對稱點的性質(zhì)得出各對應(yīng)點位置進(jìn)而得出答案;

(2)直接利用平移的性質(zhì)得出各對應(yīng)點位置進(jìn)而得出答案.

試題解析:(1)如圖所示:△A1B1C1,即為所求;

(2)如圖所示:△A2B2C2,即為所求,點A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】y=(m1x2|m|+3是關(guān)于x的一次函數(shù),則m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(4,﹣3)關(guān)于x軸對稱的點的坐標(biāo)是( )
A.(4,3)
B.(-4,3)
C.(3,-4)
D.(-3,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟進(jìn)行裁剪和拼圖

第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(EBD上任意一點),得到△ABE和△ADE紙片;

第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;

第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQDC重合,△PQM和△DCFDC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PRBC重合,△PRN和△BCGBC同側(cè))

則由紙片拼成的五邊形PMQRN中,對角線MN長度的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=3M是邊CD上一點,將△ADM沿直線AM對折,得到△ANM

1)當(dāng)AN平分∠MAB時,求DM的長;

2)連接BN,當(dāng)DM=1時,求△ABN的面積;

3)當(dāng)射線BN交線段CD于點F時,求DF的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果代數(shù)式x﹣4y的值為3,那么代數(shù)式2x﹣8y﹣1的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a、b是兩個整數(shù),若定義一種運算“△”,aba2+b2+ab,則方程(x+2)△x1的實數(shù)根是( 。

A. x1x21B. x10,x21

C. x1x2=﹣1D. x11,x2=﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:14a2_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張正方形紙片剪去四個大小形狀一樣的小正方形,然后將其中一個小正方形再按同樣的方法剪成四個小正方形,再將其中一個小正方形剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進(jìn)行下去.

1填表:

2)如果剪了100次,共剪出多少個小正方形?

3)如果剪n次,共剪出多少個小正方形?

4)如果要剪出100個正方形,那么需要剪多少次?

查看答案和解析>>

同步練習(xí)冊答案