【題目】如圖,CD是線段AB的垂直平分線,則∠CAD=CBD.請說明理由:

解:∵ CD是線段AB的垂直平分線

AC=BC,AD=DB

ADCBDC中,

ADC≌和BDC( .

CAD=CBD .

【答案】垂直平分線定理,CD=CD,公共邊,SSS,全等三角形對應角相等.

【解析】

根據(jù)線段垂直平分線性質得出AC=BC,AD=BD,根據(jù)SSS證出△ACD≌△BCD即可.

解:∵CD是線段AB的垂直平分線,
AC=BCAD=BD,(垂直平分線定理)
ADCBDC中,

ADC≌和BDC( SSS.

CAD=CBD(全等三角形對應角相等).

故答案為:垂直平分線定理,CD=CD,公共邊,SSS,全等三角形對應角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線,相交于點,平分

1)若,,求的度數(shù);

2)若平分,設

①求證;

②求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABE中,BAE=105°,AE的垂直平分線MNBE于點C,且ABCE,則B的度數(shù)是(  )

A. 45°B. 60°C. 50°D. 55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,已知點A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是ABC的邊AC上任意一點,ABC經(jīng)過平移后得到A1B1C1,點P的對應點為P1(a+6,b﹣2).

(1)平移后的三個頂點坐標分別為:.A1( ),B1( ),C1( ).

(2)在上圖中畫出平移后三角形A1B1C1

(3)畫出AOA1并求出AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請結合圖形完成下列推理過程:

1∵∠2+∠4=180°,

∴DE∥AC ______).

2∵∠1=∠C,

∴DE∥____________).

3∵AB∥DF

∴∠2=∠____________).

4∵______∥______,

∴∠B=∠3 ______).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中:

兩條直線相交只有一個交點;

兩條直線不是一定有公共點;

直線與直線是兩條不同的直線;

兩條不同的直線不能有兩個或更多公共交點.

其中正確的是(

A. (1)(2) B. (1)(4) C. (1)(2)(4) D. (2)(3)(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點Px,y),如果點Qx,y)的縱坐標滿足y,那么稱點Q為點P關聯(lián)點

1)請直接寫出點(3,5)的關聯(lián)點的坐標   ;

2)如果點P在函數(shù)yx2的圖象上,其關聯(lián)點Q與點P重合,求點P的坐標;

3)如果點Mm,n)的關聯(lián)點N在函數(shù)y2x2的圖象上,當0≤m≤2時,求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為8的正方形OABC的兩邊在坐標軸上,以點C為頂點的拋物線經(jīng)過點A,

1)請求出拋物線的解析式;

2)連接OB,與拋物線交于點M,請求出M點坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩輛汽車沿同一條路趕赴距離的某景區(qū).甲勻速行駛一段時間出現(xiàn)故障,停車檢修后繼續(xù)行駛.圖中折線、線段分別表示甲、乙兩車所行的路程與甲車出發(fā)時間之間的關系,則下列結論中正確的個數(shù)是( )①甲車比乙車早出發(fā)2小時;②圖中的;③兩車相遇時距離目的地;④乙車的平均速度是;⑤甲車檢修后的平均速度是

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案