【題目】搬進新居后,小杰自己動手用彩塑紙做了一個如圖所示的正方形的掛式小飾品ABCD,彩線BD.AN.CM將正方形ABCD分成六部分,其中M是AB的中點,N是BC的中點,AN與CM交于O點.已知正方形ABCD的面積為576cm2 , 則被分隔開的△CON的面積為( 。
A.96cm2
B.48cm2
C.24cm2
D.以上都不對

【答案】B
【解析】

解答:解:找到CD的中點E,找到AD的中點F,連接CF,AE,

則CM∥EA,AN∥FC,△BOM∽△BKA,

同理可證: ,

故DK=KO=OB,

∴△BOC和△BOA的面積和為 正方形ABCD的面積,

∵CN=NB=AM=BM,

∴△OCN的面積為 △BOC和△BOA的面積和,

∴△OCN的面積為 =48cm2,

故選B

分析:先證明BO為正方形ABCD的對角線BD的 ,再求證△CNO,△NBO,△AMO,△BMO的面積相等,即△CON的面積為正方形面積的 .本題考查了正方形內(nèi)中位線的應(yīng)用,考查了正方形四邊均相等的性質(zhì),解本題的關(guān)鍵是求證BO= BD,△OCN的面積為 △BOC和△BOA的面積和

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,根據(jù)圖象回答下列問題:

1a   0;

2b   0;

3b2﹣4ac   0

4y0時,x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標系中,拋物線)交x軸于AB兩點,交y軸于點C,且對稱軸為直線x=―2 .

(1)求該拋物線的解析式及頂點D的坐標;

(2)若點P(0,t)是y軸上的一個動點,請進行如下探究:

探究一:如圖1,設(shè)△PAD的面積為S,令Wt·S,當(dāng)0<t<4時,W是否有最大值?如果有,求出W的最大值和此時t的值;如果沒有,說明理由;

探究二:如圖2,是否存在以P、AD為頂點的三角形與RtAOC相似?如果存在,求點P的坐標;如果不存在,請說明理由.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是(

A.a2÷a5a7B.-3a23-9a5

C.1-x)(1+x)=x21D.a-b2a2-b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,以CD為邊作等邊三角形CDE,BE與AC相交于點M,則∠AMD的度數(shù)是( 。
A.75°
B.60°
C.54°
D.67.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一塊三角形廢料如圖所示,∠A=30°,∠C=90°,BC=6.用這塊廢料剪出一個平行四邊形AGEF,其中,點G,E,F(xiàn)分別在AB,BC,AC上.設(shè)CE=x

(1)求x=2時,平行四邊形AGEF的面積.

(2)當(dāng)x為何值時,平行四邊形AGEF的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】度分秒的換算
(1)36.27°=秒;
(2)40°43′30″=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x2+3x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:﹣1﹣(﹣1)0的結(jié)果正確是(
A.0
B.1
C.2
D.﹣2

查看答案和解析>>

同步練習(xí)冊答案