【題目】如圖,點(diǎn)P是∠AOB外的一點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于OA的對稱點(diǎn),點(diǎn)R是點(diǎn)P關(guān)于OB的對稱點(diǎn),直線QR分別交∠AOB兩邊OA,OB于點(diǎn)M,N,連結(jié)PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度數(shù).

【答案】17°

【解析】

先根據(jù)點(diǎn)P于點(diǎn)Q關(guān)于直線OA對稱可知OM是線段PQ的垂直平分線,故PM=MQ,∠PMQ=2∠PMO,根據(jù)三角形內(nèi)角和定理求出∠PQM的度數(shù),同理可得出PN=RN,故可得出∠PNR=2∠PNO,再由平角的定義得出∠PNQ的度數(shù),由三角形外角的性質(zhì)即可得出結(jié)論.

解:∵點(diǎn)Q和點(diǎn)P關(guān)于OA的對稱,

點(diǎn)R和點(diǎn)P關(guān)于OB的對稱

∴直線OA、OB分別是PQ、PR的中垂線,

∴MP=MQ,NP=NR,

∴∠PMO=∠QMO,∠PNO=∠RNO,

∵∠PMO=3 3°,∠PNO=70°

∴∠PMO=∠QMO=33°,∠PNO=∠RNO=70°

∴∠PMQ=66°,∠PNR=140°

∴∠MQP=57°,

∴∠PQN=123°,∠PNQ=40°,

∴∠QPN=17°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)15﹣(﹣8)+(﹣20)﹣12

(2)2×(﹣3)2﹣4×(﹣3)+15

(3)(﹣2+|﹣2|3

(4)﹣20+(﹣2)2﹣32+|﹣10|

(5)﹣22×2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)5m-7n-8p+5n-9m-p;

(2)x4x5(-x7+5(x44-(x73÷x5.

【答案】(1)-4m-2n-9p;(2)3x16

【解析】

(1)先移項(xiàng),再合并同類項(xiàng);

(2)原式利用冪的乘方、同底數(shù)冪的乘法和除法法則計(jì)算,再合并即可得到結(jié)果.

(1)5m-7n-8p+5n-9m-p=5m-9m-7n+5n-8p-p=-4m-2n-9p;

(2)x4x5-x7+5x44-x73÷x5=- x4x5x7+5x16-x21÷x5=- x16 +5x16-x16=3x16

【點(diǎn)睛】

此題考查了冪的乘方、同底數(shù)冪的乘法、除法法則計(jì)算以及合并同類項(xiàng),熟練掌握整式運(yùn)算的有關(guān)法則是解答此題的關(guān)鍵.

型】解答
結(jié)束】
21

【題目】解方程(x-2)-(4x-1)=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知a+b=5,ab=-2,求代數(shù)式(6a-3b-2ab)-(a-8b-ab)的值;

(2)已知2x-y-4=0,9x27y÷81y的值

【答案】(1)27;(2)81.

【解析】

(1)運(yùn)用整式的加減運(yùn)算順序先去括號(hào),再合并同類項(xiàng),根據(jù)乘法的分配律將5a+5b變形為5(a+b),最后代入求值即可;

(2)根據(jù)冪的乘方,可得同底數(shù)冪的乘法,根據(jù)同底數(shù)冪的乘法,可得答案.

(1)原式=6a-3b-2ab-a+8b+ab=5a+5b-ab=5(a+b)-ab,

當(dāng)a+b=5,ab=-2時(shí),

原式=5×5-(-2)=27;

(2)9x27y÷81y=32x33y÷34y=32x-y,

2x-y-4=0,2x-y=4,

故原式=34=81.

【點(diǎn)睛】

本題考查了冪的乘方,同底數(shù)冪的乘法,整式的混合運(yùn)算和求值的應(yīng)用,用了整體代入思想.

型】解答
結(jié)束】
23

【題目】根據(jù)要求完成下列題目:

(1)圖中有_____塊小正方體;

(2)請?jiān)谙旅娣礁窦堉蟹謩e畫出它的主視圖、左視圖和俯視圖;

(3)用小正方體搭一幾何體,使得它的俯視圖和左視圖與你在圖方格中所畫的圖一致,若這樣的幾何體最少要m個(gè)小正方體,最多要n個(gè)小正方體,則m+n的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓錐紙帽的側(cè)面展開圖是一個(gè)圓心角為120°,弧長為6π(cm)的扇形紙片,則圓錐形紙帽的側(cè)面積為(
A.9π cm2
B.18π cm2
C.27π cm2
D.36π cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在湖邊高出水面50 m的山頂A處看見一艘飛艇停留在湖面上空某處,觀察到飛艇底部標(biāo)志P處的仰角為45°,又觀其在湖中之像的俯角為60°.則飛艇離開湖面的高度( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y= x+b與雙曲線y= 的一個(gè)交點(diǎn)為(2,5),直線與y軸交于點(diǎn)A.
(1)求m的值及點(diǎn)A的坐標(biāo);
(2)若點(diǎn)P在雙曲線y= 的圖象上,且SPOA=10,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABGD中,AB=AD=6,梯形ABCD中,DE⊥DC交AB于E,DF平分∠EDC交BC于F,連結(jié)EF.
(1)證明:EF=CF;
(2)當(dāng) 時(shí),求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】萬安縣開發(fā)區(qū)某電子電路板廠到井岡山大學(xué)從應(yīng)屆畢業(yè)生中招聘公司職員,對應(yīng)聘者的專業(yè)知識(shí)、英語水平、參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等三項(xiàng)進(jìn)行測試或成果認(rèn)定,三項(xiàng)的得分滿分都為100分,三項(xiàng)的分?jǐn)?shù)分別按5∶3∶2的比例記入每人的最后總分,有4位應(yīng)聘者的得分如下表所示.

項(xiàng)目

專業(yè)知識(shí)

英語水平

參加社會(huì)實(shí)踐與

社團(tuán)活動(dòng)等

85

85

90

85

85

70

80

90

70

90

90

50

(1)分別算出4位應(yīng)聘者的總分;

(2)表中四人“專業(yè)知識(shí)”的平均分為85分,方差為12.5,四人“英語水平”的平均分為87.5分,方差為6.25,請你求出四人“參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等”的平均分及方差;

(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對大學(xué)生應(yīng)聘者有何建議?

查看答案和解析>>

同步練習(xí)冊答案