【題目】如圖,邊長為2的正方形的頂點在軸正半軸上,反比例函數(shù)的圖像在第一象限的圖像經(jīng)過點,交于.
(1)當(dāng)點的坐標(biāo)為時,求和的值;
(2)若,求的面積.
【答案】(1)k=6;n=;(2)S△DOB=3.
【解析】
(1)由題意表示出點D的坐標(biāo),由反比例函數(shù)經(jīng)過點D、E列出關(guān)于n的方程,求得n的值,進(jìn)而求得k的值.
(2)設(shè)D(x,2),則E(x+2,),由反比例函數(shù)經(jīng)過點D、E列出關(guān)于x的方程,求得x的值即可得出答案.
解:(1)∵正方形ABCD的邊長為2,點E的坐標(biāo)為(5,n),
∴OB=5,AB=AD=2,
∴D(3,2),
∵反比例函數(shù)y=在第一象限的圖象經(jīng)過點D,
∴k=3×2=6,
∴反比例為:y=,
∵反比例函數(shù)y=在第一象限的圖象交BC于E,
∴n=;
(2)如圖:連接OD、BD,
∵AB=AD=BC=2,
∴,
設(shè)D(x,2),則E(x+2,),
∵點D和點E在的圖像上,
∴,
解得:,,
∴點D為(1,2),點B為(3,0),
∴OB=3,AD=2,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點的坐標(biāo)為,過點作軸的垂線交過原點與軸夾角為的直線于點,以原點為圓心,的長為半徑畫弧交軸正半軸于點;再過點作軸的垂線交直線于點,以原點為圓心,以的長為半徑畫弧交軸正半軸于點……按此做法進(jìn)行下去,則點的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為助力我省脫貧攻堅,某村在“農(nóng)村淘寶網(wǎng)店”上銷售該村優(yōu)質(zhì)農(nóng)產(chǎn)品,該網(wǎng)店于今年六月底收購一批農(nóng)產(chǎn)品,七月份銷售袋,八、九月該商品十分暢銷,銷售量持續(xù)走高,在售價不變的基礎(chǔ)上,九月份的銷售量達(dá)到袋.
(1)求八、九這兩個月銷售量的月平均增長率;
(2)該網(wǎng)店十月降價促銷,經(jīng)調(diào)查發(fā)現(xiàn),若該農(nóng)產(chǎn)品每袋降價元,銷售量可增加袋,當(dāng)農(nóng)產(chǎn)品每袋降價多少元時,這種農(nóng)產(chǎn)品在十月份可獲利元?(若農(nóng)產(chǎn)品每袋進(jìn)價元,原售價為每袋元)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著電影《流浪地球》的熱映,科幻大神劉慈欣的著作受到廣大書迷的追捧,《流浪地球》《球狀閃電》《三體》《超新星紀(jì)元》四部小說在某網(wǎng)上書城熱銷.已知《流浪地球》的銷售單價與《球狀閃電》相同,《三體》的銷售單價是《超新星紀(jì)元》單價的3倍,《流浪地球》與《超新星紀(jì)元》的單價和大于40元且不超過50元;若自電影上映以來,《流浪地球》與《超新星紀(jì)元》的日銷售量相同,《球狀閃電》的日銷售量為《三體》日銷售量的3倍,《流浪地球》與《三體》的日銷售量和為450本,且《流浪地球》的日銷售量不低于《三體》的日銷量的且小于230本;《流浪地球》《三體》的日銷量額之和比《球狀閃電》《超新星紀(jì)元》的日銷售額之和多1575元.則當(dāng)《流浪地球》《三體》這2部小說日銷額之和最多時,《流浪地球》的單價為_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角標(biāo)系中,拋物線C:y=與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,點D為y軸正半軸上一點.且滿足OD=OC,連接BD,
(1)如圖1,點P為拋物線上位于x軸下方一點,連接PB,PD,當(dāng)S△PBD最大時,連接AP,以PB為邊向上作正△BPQ,連接AQ,點M與點N為直線AQ上的兩點,MN=2且點N位于M點下方,連接DN,求DN+MN+AM的最小值
(2)如圖2,在第(1)問的條件下,點C關(guān)于x軸的對稱點為E,將△BOE繞著點A逆時針旋轉(zhuǎn)60°得到△B′O′E′,將拋物線y=沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過點E,此時拋物線C′與x軸的右交點記為點F,連接E′F,B′F,R為線段E’F上的一點,連接B′R,將△B′E′R沿著B′R翻折后與△B′E′F重合部分記為△B′RT,在平面內(nèi)找一個點S,使得以B′、R、T、S為頂點的四邊形為矩形,求點S的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)“校園手機”現(xiàn)象越來越受到社會的關(guān)注,小記者劉紅隨機調(diào)查了某校若干學(xué)生和家長對中學(xué)生帶手機現(xiàn)象的看法,制作了如下的統(tǒng)計圖:
(1)求這次調(diào)查的總?cè)藬?shù),并補全圖1;
(2)求圖2中表示家長“贊成”的圓心角的度數(shù);
(3)針對隨機調(diào)查的情況,劉紅決定從初三一班表示贊成的4位家長中隨機選擇2位進(jìn)行深入調(diào)查,其中包含小亮和小丁的家長,請你利用樹狀圖或列表的方法,求出小亮和小丁的家長被同時選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在一張ABCD的紙片中,ABCD的面積為6,DC=3,∠BCD=45°,點P是BD上的一動點(點P與點B,D不重合).現(xiàn)將這張紙片分別沿BD,AP剪成三塊,并按圖2(注:圖2中的①,②是將圖1中的①,②翻轉(zhuǎn)背面朝上,再拼接而成的)所示放置
(1)當(dāng)點P是BD的中點時,求AP的長.
(2)試探究:當(dāng)點P在BD的什么位置上時,MN的長最?請求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,O為AC的中點,過點O的直線分別與AB,CD交于點E,F,連接BF交AC于點M,連接DE,BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB∶OE=3∶2.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com