【題目】8筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),稱后的紀(jì)錄如下:

回答下列問題:

1)這8筐白菜中最接近標(biāo)準(zhǔn)重量的這筐白菜重__________千克;

2)與標(biāo)準(zhǔn)重量比較,8筐白菜總計(jì)超過或不足多少千克?

3)若白菜每千克售價(jià)2.6元,則出售這8筐白菜可賣多少元?

【答案】124.5;(2) 不足5.5千克;(3)505.7.

【解析】

1)紀(jì)錄中絕對(duì)值最小的數(shù),就是最接近標(biāo)準(zhǔn)重量的數(shù);

2)先將記錄中各數(shù)相加,再根據(jù)正負(fù)數(shù)的意義解答;

3)計(jì)算出8筐白菜的實(shí)際重量,然后乘以每千克售價(jià)可得答案.

解:(1)最接近標(biāo)準(zhǔn)重量的是紀(jì)錄中絕對(duì)值最小的數(shù),因而是250.524.5千克,

故答案為:24.5;

21.5+-3+2+-0.5+1+-2+-2+-2.5= -5.5

答:與標(biāo)準(zhǔn)重量比較,8筐白菜總計(jì)不足5.5千克;

3(千克),

(元),

答:出售這8筐白菜可賣.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(-1,0)和點(diǎn)B(1,2),在軸上確定點(diǎn)P,使得ABP為直角三角形,則滿足這樣條件的點(diǎn)P的坐標(biāo)是____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠現(xiàn)有種原料,種原料,現(xiàn)計(jì)劃用這兩種原料生產(chǎn),兩個(gè)品種的飲料,已知生產(chǎn)每千克品種的飲料需要種原料種原料,可獲利元,生產(chǎn)每千克品種的飲料只需要種原料,可獲利3千元,兩種原料正好用完.

1)生產(chǎn)品種的飲料________千克.

2)生產(chǎn)品種的飲料使用種原料多少千克?

3)該廠共獲利多少元?(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點(diǎn)EBC上一點(diǎn),且DE=DA,AF⊥DE,垂足為點(diǎn)F,在下列結(jié)論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長(zhǎng),交AB延長(zhǎng)線于點(diǎn)E,連接BDEC

(1)求證:四邊形BECD是平行四邊形;

(2)當(dāng)∠A50°,∠BOD100°時(shí),判斷四邊形BECD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上線段 (單位長(zhǎng)度),線段 (單位長(zhǎng)度),點(diǎn)在數(shù)軸上表示的數(shù)是-10,點(diǎn)在數(shù)軸上表示的數(shù)是16,若線段以每秒1個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng),同時(shí)線段以每秒3個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為

(1)當(dāng)點(diǎn)與點(diǎn)相遇時(shí),點(diǎn)、點(diǎn)在數(shù)軸上表示的數(shù)分別為 ;

(2)當(dāng)為何值時(shí),點(diǎn)剛好是的中點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0)的圖象如圖所示,下列結(jié)論:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正確的結(jié)論有______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線,ADCD于點(diǎn)D.EAB延長(zhǎng)線上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OC,AC.

(1)求證AC平分∠DAO;

(2)若∠DAO=105°,E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列有理數(shù)大小關(guān)系判斷正確的是(  )

A. 0>|﹣10| B. ﹣(﹣)>﹣|﹣| C. |﹣3|<|+3| D. ﹣1>﹣0.01

查看答案和解析>>

同步練習(xí)冊(cè)答案