【題目】課本中有一個(gè)例題:

有一個(gè)窗戶形狀如圖1,上部是一個(gè)半圓,下部是一個(gè)矩形,如果制作窗框的材料總長為6m,如何設(shè)計(jì)這個(gè)窗戶,使透光面積最大?

這個(gè)例題的答案是:當(dāng)窗戶半圓的半徑約為0.35m時(shí),透光面積最大值約為1.05m2

我們?nèi)绻淖冞@個(gè)窗戶的形狀,上部改為由兩個(gè)正方形組成的矩形,如圖2,材料總長仍為6m,利用圖3,解答下列問題:

1)若AB1m,求此時(shí)窗戶的透光面積?

2)與課本中的例題比較,改變窗戶形狀后,窗戶透光面積的最大值有沒有變大?請通過計(jì)算說明.

【答案】1;(2)最大值為,窗戶透光面積的最大值變大了.

【解析】

1)根據(jù)矩形和正方形的周長進(jìn)行解答即可;

2)設(shè)ABxcm,利用二次函數(shù)的最值解答即可.

1)由已知可得:AD=S=1×m2,

2)設(shè)AB=xm,則AD=3xm ∵3-x0 ∴,

設(shè)窗戶面積為S,由已知得:S=AB·AD=x3-x=

當(dāng)x=m時(shí),且x=m的范圍內(nèi),S最大值=

與課本中的例題比較,現(xiàn)在窗戶透光面積的最大值變大

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P、G是菱形ABCD的邊BC、DC的中點(diǎn),K是菱形的對角線BD上的動(dòng)點(diǎn),若BD8,AC6,則KP+KG的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017甘肅省天水市)△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;

2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=2CQ=9時(shí)BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形紙片ABCD的邊長為12,E是邊CD上一點(diǎn),連接AE,折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過點(diǎn)B,得到折痕BF,點(diǎn)F在AD上,若DE=5,則GE的為_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),其部分圖象如圖所示,下列結(jié)論:

4ac<b2;

②方程ax2+bx+c=0的兩個(gè)根是x1=-2 x2=3

3a+c=0;

④當(dāng)y>0時(shí),x的取值范圍是-1<x<3;

⑤當(dāng)x<0時(shí),yx增大而增大

其中結(jié)論正確的個(gè)數(shù)是( )

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E、F分別為BC、AC、AB的中點(diǎn),AD、BECF相交于點(diǎn)O,AB6AC8,BC10,則DE_____,OA_____OF_____,∠DEF=∠_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是矩形ABCD的邊上一動(dòng)點(diǎn),矩形兩邊長AB、BC長分別為1520,那么P到矩形兩條對角線ACBD的距離之和是(  )

A.6B.12C.24D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)是(54),⊙My軸相切于點(diǎn)C,與x軸相交于A、B兩點(diǎn).

1)則點(diǎn)AB、C的坐標(biāo)分別是A__,__),B____),C__,__);

2)設(shè)經(jīng)過A、B兩點(diǎn)的拋物線解析式為,它的頂點(diǎn)為F,求證:直線FA與⊙M相切;

3)在拋物線的對稱軸上,是否存在點(diǎn)P,且點(diǎn)Px軸的上方,使PBC是等腰三角形.如果存在,請求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+x+c經(jīng)過B、C兩點(diǎn).

(1)求拋物線的解析式;

(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請求出點(diǎn)E的坐標(biāo);

(3)在(2)的結(jié)論下,過點(diǎn)Ey軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案