【題目】(2017甘肅省天水市)△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉,旋轉過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
(1)如圖①,當點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;
(2)如圖②,當點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;并求當BP=2,CQ=9時BC的長.
【答案】(1)證明見解析;(2)證明見解析,.
【解析】
試題(1)由AB=AC,AP=AQ可得BP=CQ,又因BE=CE,∠B=∠C=45°,利用“SAS”判定△BPE≌△CQE;(2)連接PQ,根據三角形的一個外角等于與它不相鄰的兩個內角的和可得∠BEP+∠DEF=∠EQC+∠C,所以∠BEP=∠EQC;再由兩角對應相等的兩個三角形相似可得△BPE∽△CQE,根據相似三角形的性質可得,把BP=a,CQ=代入上式可求得BE=CE=,再求得,AB=AC=BCsin45°=3a,所以,,在Rt△APQ中,由勾股定理可得.
試題解析:
解:(1)證明:∵△ABC是等腰直角三角形,
∴∠B=∠C=45°,AB=AC,
∵AP=AQ,
∴BP=CQ,
∵E是BC的中點,
∴BE=CE,
在△BPE和△CQE中,
∵,
∴△BPE≌△CQE(SAS);
(2)解:連接PQ,
∵△ABC和△DEF是兩個全等的等腰直角三角形,
∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,
即∠BEP+∠DEF=∠EQC+∠C,
∴∠BEP+45°=∠EQC+45°,
∴∠BEP=∠EQC,
∴△BPE∽△CQE,
∴,
∵BP=a,CQ=a,BE=CE,
∴,
∴BE=CE=,
∴,
∴AB=AC=BCsin45°=3a,
∴,,
在Rt△APQ中,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠A=90°,AD=1cm,AB=3cm,BC=5cm,動點P從點B出發(fā)以1cm/s的速度沿BC的方向運動,動點Q從點C出發(fā)以2cm/s的速度沿CD方向運動,P、Q兩點同時出發(fā),當Q到達點D時停止運動,點P也隨之停止,設運動的時間為ts(t>0)
(1)求線段CD的長;
(2)t為何值時,線段PQ將四邊形ABCD的面積分為1:2兩部分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結論:
①∠EBG=45°; ②△DEF∽△ABG;
③S△ABG=S△FGH; ④AG+DF=FG.
其中正確的是_____.(填寫正確結論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個木制的棱長為3的正方體的表面涂上顏色,將它的棱三等分,然后從等分點把正方體鋸開,得到27個棱長為l的小正方體,將這些小正方體充分混合后,裝入口袋,從這個口袋中任意取出一個小正方體,則這個小正方體的表面恰好涂有兩面顏色的概率是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解材料一:一組對邊平行,另一組對邊不平行的四邊形叫梯形,其中平行的兩邊叫梯形的底邊,不平行的兩邊叫梯形的底邊,不平行的兩邊叫梯形的腰,連接梯形兩腰中點的線段叫梯形的中位線.梯形的中位線具有以下性質:梯形的中位線平行于兩底和,并且等于兩底和的一半.
如圖(1):在梯形ABCD中:AD∥BC,
∵E、F是AB、CD的中點,∴EF∥AD∥BC,EF=(AD+BC)
材料二:經過三角形一邊的中點與另一邊平行的直線必平分第三邊
如圖(2):在△ABC中:∵E是AB的中點,EF∥BC
∴F是AC的中點
請你運用所學知識,結合上述材料,解答下列問題.
如圖(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分別為AB、CD的中點,∠DBC=30°.
(1)求證:EF=AC;
(2)若OD=,OC=5,求MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點F、C是⊙O上兩點,且 = = ,連接AC、AF,過點C作CD⊥AF,交AF的延長線于點D,垂足為D,若CD=2 ,則⊙O的半徑為( )
A. 2 B. 4 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,已知AB=AD=2,BC=3,CD=1,∠A=90°.
(1)求BD的長;
(2)求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在CD上的點F處,若△FDE的周長為12,△FCB的周長為28,則FC的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,動點P從B點出發(fā),沿B→C→D→A勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.
(1)在這個變化中,自變量、因變量分別是 、 ;
(2)當點P運動的路程x=4時,△ABP的面積為y= ;
(3)求AB的長和梯形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com