【題目】如圖,已知△AOB與△A1OB1是以點O為位似中心的位似圖形,且相似比為1:2,點B的坐標(biāo)為(-1,2),則點B1的坐標(biāo)為( )
A.(2,-4)B.(1,-4)C.(-1,4)D.(-4,2)
【答案】A
【解析】
過B作BC⊥y軸于C,過B1作B1D⊥y軸于D,依據(jù)△AOB和△A1OB1相似,且相似比為1:2,即可得到,再根據(jù)△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,進(jìn)而得出點B1的坐標(biāo)為(2,-4).
解:如圖,過B作BC⊥y軸于C,過B1作B1D⊥y軸于D,
∵點B的坐標(biāo)為(-1,2),
∴BC=1,OC=2,
∵△AOB和△A1OB1相似,且相似比為1:2,
∴,
∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,
∴△BOC∽△B1OD,
∴OD=2OC=4,B1D=2BC=2,
∴點B1的坐標(biāo)為(2,-4),
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為BC邊上一點,且AB=AE,若AE平分∠DAB,∠EAC=25°,則∠AED的度數(shù)是______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AD⊥BC 于 D(其中 BD>CD),BE⊥AC 于 E,AD 與 BE 相交于點 F,直線 AD 與△BCF 的外接圓 O 交于點 H,點 M 在圓 O 上,滿足弧 HM=弧 CF,連接 FM.
(1)求證:AF=CM;
(2)若∠ABE=45°,FH ,圓O的直徑為,求BF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解中考體育科目訓(xùn)練情況,某區(qū)從全區(qū)九年級學(xué)生中隨機抽取了部分學(xué)生進(jìn)行了一次中考體育科目測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格:D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖。請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣測試的學(xué)生人數(shù)是多少?
(2)通過計算把圖中的條形統(tǒng)計圖補充完整
(3)該區(qū)九年級有學(xué)生7000名,如果全部參加這次中考體育科目測試請估計不及格人數(shù)有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足社區(qū)居民健身的需要,區(qū)政府準(zhǔn)備采購若干套健身器材免費提供給社區(qū),經(jīng)考察,康樂公司有甲,乙兩種型號的健身器材可供選擇.
(1)康樂公司2017年每套甲型健身器材的售價為2萬元,經(jīng)過連續(xù)兩年降價,2019年每套售價為1.28萬元,求每套甲型健身器材售價的年平均下降率n;
(2)2019年市政府經(jīng)過招標(biāo),決定年內(nèi)采購并安裝康樂公司甲,乙兩種型號的健身器材共80套,采購專項經(jīng)費總計不超過95萬元,采購合同規(guī)定:每套甲型健身器材售價為1.28萬元,每套乙型健身器材售價為1.4(1﹣n)萬元.
①甲型健身器材最多可購買多少套?
②按照甲型健身器材購買最多的情況下,安裝完成后,若每套甲型和乙型健身器材一年的養(yǎng)護(hù)費分別是購買價的8%和10%,區(qū)政府計劃支出9萬元進(jìn)行養(yǎng)護(hù),問該計劃支出能否滿足一年的養(yǎng)護(hù)需要?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.如圖,某天該深潛器在海面下2000米的A點處作業(yè),測得俯角為30°正前方的海底C點處有黑匣子信號發(fā)出.該深潛器受外力作用可繼續(xù)在同一深度直線航行3000米后,再次在B點處測得俯角為45°正前方的海底C點處有黑匣子信號發(fā)出,請通過計算判斷“蛟龍”號能否在保證安全的情況下打撈海底黑匣子.(參考數(shù)據(jù)≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)的圖象與一次函數(shù)的圖象交于A、B兩點,點B在點A的右側(cè),直線AB分別交x軸、y軸于C、D兩點,且k<0.
(1)求A,B兩點橫坐標(biāo);
(2)若△OAB是以OA為腰的等腰三角形,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建文明城市,增弘環(huán)保意識,某班隨機抽取了8名學(xué)生(分別為A,B,C,D,E,F,G,H),進(jìn)行垃圾分類投放檢測,檢測結(jié)果如下表,其中“√”表示投放正確,“×”表示投放錯誤,
學(xué)生 垃圾類別 | A | B | C | D | E | F | G | H |
可回收物 | √ | × | × | √ | √ | × | √ | √ |
其他垃圾 | × | √ | √ | √ | √ | × | √ | √ |
餐廚垃圾 | √ | √ | √ | √ | √ | √ | √ | √ |
有害垃圾 | × | √ | × | × | × | √ | × | √ |
(1)檢測結(jié)果中,有幾名學(xué)生正確投放了至少三類垃圾?請列舉出這幾名學(xué)生.
(2)為進(jìn)一步了解學(xué)生垃圾分類的投放情況,從檢測結(jié)果是“有害垃圾”投放錯誤的學(xué)生中隨機抽取2名進(jìn)行訪談,求抽到學(xué)生A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MON=120°,點A,B分別在ON,OM邊上,且OA=OB,點C在線段OB上(不與點O,B重合),連接CA.將射線CA繞點C逆時針旋轉(zhuǎn)120°得到射線CA′,將射線BO繞點B逆時針旋轉(zhuǎn)150°與射線CA′交于點D.
(1)根據(jù)題意補全圖1;
(2)求證:
①∠OAC=∠DCB;
②CD=CA(提示:可以在OA上截取OE=OC,連接CE);
(3)點H在線段AO的延長線上,當(dāng)線段OH,OC,OA滿足什么等量關(guān)系時,對于任意的點C都有∠DCH=2∠DAH,寫出你的猜想并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com