【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
【答案】(1)詳見解析;(2).
【解析】
試題分析:(1)由平行四邊形的性質(zhì)和角平分線易證∠BAE=∠BEA,根據(jù)等腰三角形的性質(zhì)可得AB=BE;(2)易證△ABE是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AE=AB=4,AF=EF=2,由勾股定理求出BF,再由AAS證明△ADF≌△ECF,即△ADF的面積=△ECF的面積,因此平行四邊形ABCD的面積=△ABE的面積=AEBF,即可得出結(jié)果.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,AB=CD,
∴∠B+∠C=180°,∠AEB=∠DAE,
∵AE是∠BAD的平分線,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴AB=BE,∴BE=CD;
(2)解:∵AB=BE,∠BEA=60°,
∴△ABE是等邊三角形,
∴AE=AB=4,
∵BF⊥AE,
∴AF=EF=2,
∴BF=,
∵AD∥BC,
∴∠D=∠ECF,∠DAF=∠E,
在△ADF和△ECF中,
,
∴△ADF≌△ECF(AAS),
∴△ADF的面積=△ECF的面積,
∴平行四邊形ABCD的面積=△ABE的面積=AEBF=×4×2=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報道,2016年我市城鎮(zhèn)非私營單位就業(yè)人員平均工資超過70500元,將數(shù)70500用科學(xué)記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A∶∠B∶∠C=1∶1∶2,則△ABC是( )
A.等腰三角形
B.直角三角形
C.銳角三角形
D.等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在△ABC中,點D,E分別在邊AC,AB上,BD與CE交于點O,給出下列三個條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個條件中,由哪兩個條件可以判定△ABC是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中有一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線。
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線;
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù);
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列因式分解正確的是( )
A.x2-4=(x+4)(x-4)
B.x2+2x+1=x(x+2)+1
C.3mx-6my=3m(x-6y)
D.2x+4=2(x+2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com