【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)由平行四邊形的性質(zhì)和角平分線得出∠BAE=∠BEA,即可得出AB=BE;
(2)先證明△ABE是等邊三角形,得出AE=AB=4,AF=EF=2,由勾股定理求出BF,由AAS證明△ADF≌△ECF,得出△ADF的面積=△ECF的面積,因此平行四邊形ABCD的面積=△ABE的面積=AEBF,即可得出結果.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AB∥CD,AB=CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分線,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;
(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等邊三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,∵∠D=∠ECF,∠DAF=∠E,AF=EF,∴△ADF≌△ECF(AAS),∴△ADF的面積=△ECF的面積,∴平行四邊形ABCD的面積=△ABE的面積=AEBF=×4×=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知直線PQ∥MN,點A在直線PQ上,點C、D在直線MN上,連接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE與CE相交于E.
(1)求∠AEC的度數(shù);
(2)若將圖1中的線段AD沿MN向右平移到A1D1如圖2所示位置,此時A1E平分∠AA1D1 , CE平分∠ACD1 , A1E與CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度數(shù).
(3)若將圖1中的線段AD沿MN向左平移到A1D1如圖3所示位置,其他條件與(2)相同,求此時∠A1EC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設平面內(nèi)一點到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R .對于一個點與等邊三角形,給出如下定義:滿足r≤d≤R的點叫做等邊三角形的中心關聯(lián)點.在平面直角坐標系xOy中,等邊△ABC的三個頂點的坐標分別為A(0,2),B(﹣,﹣1),C(,﹣1).
(1)已知點D(2,2),E(,1),F(,﹣1).在D,E,F中,是等邊△ABC的中心關聯(lián)點的是 ;
(2)如圖1,過點A作直線交x軸正半軸于M,使∠AMO=30°.
①若線段AM上存在等邊△ABC的中心關聯(lián)點P(m,n),求m的取值范圍;
②將直線AM向下平移得到直線y=kx+b,當b滿足什么條件時,直線y=kx+b上總存在等邊△ABC的中心關聯(lián)點;(直接寫出答案,不需過程)
(3)如圖2,點Q為直線y=﹣1上一動點,⊙Q的半徑為.當Q從點(﹣4,﹣1)出發(fā),以每秒1個單位的速度向右移動,運動時間為t秒.是否存在某一時刻t,使得⊙Q上所有點都是等邊△ABC的中心關聯(lián)點?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l1:y=﹣x+3與直線l2:y=x+1相交于點A.并且l1交x軸于點B,l2交x軸于點C.若平面上有一點D,構成平行四邊形ABDC,請寫出D點坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù),其中.
(1)求該二次函數(shù)的對稱軸方程;
(2)過動點C(0, )作直線⊥y軸.
① 當直線與拋物線只有一個公共點時, 求與的函數(shù)關系;
② 若拋物線與x軸有兩個交點,將拋物線在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個新的圖象. 當=7時,直線與新的圖象恰好有三個公共點,求此時的值;
(3)若對于每一個給定的x的值,它所對應的函數(shù)值都不小于1,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題是真命題的是( )
A. 菱形的對角線互相平分 B. 一組對邊平行的四邊形是平行四邊形
C. 對角線互相垂直且相等的四邊形是正方形 D. 對角線相等的四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別延長ABCD的邊CD,AB到E,F,使DE=BF,連接EF,分別交AD,BC于G,H,連結CG,AH.
求證:CG∥AH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com