【題目】設(shè)平面內(nèi)一點(diǎn)到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R .對于一個(gè)點(diǎn)與等邊三角形,給出如下定義:滿足r≤d≤R的點(diǎn)叫做等邊三角形的中心關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系xOy中,等邊△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,2),B(﹣,﹣1),C(,﹣1).
(1)已知點(diǎn)D(2,2),E(,1),F(,﹣1).在D,E,F中,是等邊△ABC的中心關(guān)聯(lián)點(diǎn)的是 ;
(2)如圖1,過點(diǎn)A作直線交x軸正半軸于M,使∠AMO=30°.
①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點(diǎn)P(m,n),求m的取值范圍;
②將直線AM向下平移得到直線y=kx+b,當(dāng)b滿足什么條件時(shí),直線y=kx+b上總存在等邊△ABC的中心關(guān)聯(lián)點(diǎn);(直接寫出答案,不需過程)
(3)如圖2,點(diǎn)Q為直線y=﹣1上一動(dòng)點(diǎn),⊙Q的半徑為.當(dāng)Q從點(diǎn)(﹣4,﹣1)出發(fā),以每秒1個(gè)單位的速度向右移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.是否存在某一時(shí)刻t,使得⊙Q上所有點(diǎn)都是等邊△ABC的中心關(guān)聯(lián)點(diǎn)?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.
【答案】(1)E,F;(2)①0≤m≤,②﹣ ≤b≤2;(3)存在,t=
【解析】試題解析:(1)根據(jù)等邊三角形的中心關(guān)聯(lián)點(diǎn)的定義,可得 點(diǎn)E、F 是等邊三角形的中心關(guān)聯(lián)點(diǎn);
(2)①依題意A(0,2),M(,0)可求得直線AM的解析式為,所以△OAE為等邊三角形,所以AE邊上的高長為.當(dāng)點(diǎn)P在AE上時(shí), ≤OP≤2.所以當(dāng)點(diǎn)P在AE上時(shí),點(diǎn)P都是等邊△ABC的中心關(guān)聯(lián)點(diǎn).所以0≤m≤;
②同①得﹣≤b≤2;
(3)t=
解:(1)E,F;
(2)①解:依題意A(0,2),M(,0).
可求得直線AM的解析式為.
經(jīng)驗(yàn)證E在直線AM上.
因?yàn)?/span>OE=OA=2,∠MAO=60°,
所以△OAE為等邊三角形,
所以AE邊上的高長為.
當(dāng)點(diǎn)P在AE上時(shí), ≤OP≤2.
所以當(dāng)點(diǎn)P在AE上時(shí),點(diǎn)P都是等邊△ABC的中心關(guān)聯(lián)點(diǎn).
所以0≤m≤;
②﹣≤b≤2;
(3)t=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.a5+a5=a10
B.﹣a6(﹣a)4=a10
C.(﹣bc)4÷(﹣bc)2=b2c2
D.(﹣ab)2a=﹣a3b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是一位同學(xué)做的四道題:①a3+a3=a6;②(xy2)3=x3y6;③x2x3=x6;④(﹣a)2÷a=﹣a.其中做對的一道題是( 。
A.①
B.②
C.③
D.④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在鈍角△ABC中,點(diǎn)D是BC的中點(diǎn),分別以AB和AC為斜邊向△ABC的外側(cè)作等腰直角三角形ABE和等腰直角三角形ACF,M、N分別為AB、AC的中點(diǎn),連接DM、DN、DE、DF、EM、EF、FN.求證:
(1)△EMD≌△DNF;
(2)△EMD∽△EAF;
(3)DE⊥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長線于點(diǎn)E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com