【題目】如圖,分別延長(zhǎng)ABCD的邊CD,AB到E,F,使DE=BF,連接EF,分別交AD,BC于G,H,連結(jié)CG,AH.
求證:CG∥AH.
【答案】證明:在ABCD中,
AB∥CD,AD∥CB ,AD=CB,
∴∠E=∠F,∠EDG=∠DCH=∠FBH,
又 DE=BF ,
∴△EGD≌△FHB(AAS) ,
∴DG=BH,
∴AG=HC ,
又∵AD∥CB,
∴四邊形AGCH為平行四邊形,
∴AH∥CG.
【解析】方法不唯一,如:證明四邊形AGCH為平行四邊形,可通過(guò)證明△EGD≌△FHB,已知DE=BF,再根據(jù)ABCD得出兩組角相等即可證明△EGD≌△FHB,即可求證AH∥CG.
【考點(diǎn)精析】利用平行四邊形的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知若一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠MAN=135°,正方形ABCD繞點(diǎn)A旋轉(zhuǎn).
(1)當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的外部(頂點(diǎn)A除外)時(shí),AM,AN分別與正方形ABCD的邊CB,CD的延長(zhǎng)線交于點(diǎn)M,N,連接MN.
①如圖1,若BM=DN,則線段MN與BM+DN之間的數(shù)量關(guān)系是 ;
②如圖2,若BM≠DN,請(qǐng)判斷①中的數(shù)量關(guān)系是否仍成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(2)如圖3,當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的內(nèi)部(頂點(diǎn)A除外)時(shí),AM,AN分別與直線BD交于點(diǎn)M,N,探究:以線段BM,MN,DN的長(zhǎng)度為三邊長(zhǎng)的三角形是何種三角形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】能夠找到一點(diǎn),使該點(diǎn)到各邊的距離相等的為( 。倨叫兴倪呅危虎诹庑;③矩形;④正方形.
A.①與②B.②與③C.②與④D.③與④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】?jī)蓚(gè)有理數(shù)a、b在數(shù)軸上的位置如圖所示,則a+b0;ab0(填“<”或“>”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(1,1),N(2,0),△MNP和△M1N1P1的頂點(diǎn)都在格點(diǎn)上,△MNP與△M1N1P1是關(guān)于某一點(diǎn)中心對(duì)稱,則對(duì)稱中心的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com