【題目】如圖,為了估算河的寬度,我們可以在河對岸選定一個目標點P , 在近岸取點QS , 使點P、Q、S共線且直線PS與河垂直,接著再過點S且與PS垂直的直線a上選擇適當?shù)狞cT , 確定PT與過點Q且垂直PS的直線b的交點R . 如果測得QS=45m , ST=90m , QR=60m , 求河的寬度PQ

【答案】解答:根據(jù)題意得出:QRST ,
則△PQR∽△PST ,
= ,
QS=45m,ST=90m,QR=60m,
= ,
解得:PQ=90(m),
∴河的寬度為90米.
【解析】根據(jù)相似三角形的性質(zhì)得出 = ,進而代入求出即可.
【考點精析】解答此題的關鍵在于理解相似三角形的應用的相關知識,掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構造相似三角形求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點A(1,2),B(0,4).

(1)求此函數(shù)的解析式.

(2)求原點到直線AB的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1) ﹣(﹣2)2+(﹣0.1)0;
(2)(x+1)2﹣(x+2)(x﹣2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=6cm , 點P從點A出發(fā),沿AB方向以每秒 cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒1cm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′.設點Q運動的時間為t秒,若四邊形QPCP′為菱形,則t的值為( 。.

A.
B.2
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個鋼筋三角形框架三邊長分別為20厘米,50厘米、60厘米,現(xiàn)要再做一個與其相似的鋼筋三角形框架,而只有長是30厘米和50厘米的兩根鋼筋,要求以其中一根為邊,從另一根上截下兩段(允許有余料)作為兩邊,則不同的截法有( 。.
A.一種
B.二種
C.三種
D.四種

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D、E分別在線段AB、AC上且∠ABC=∠AED , 若DE=4,AE=5,BC=8,則AB的長為( 。
A.
B.10
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M是直線y=2x+3上的動點,過點MMN垂直于x軸于點N,y軸上是否存在點P,使得△MNP為等腰直角三角形,則符合條件的點P有(提示:直角三角形斜邊上的中線等于斜邊的一半)( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列4組條件中,能判定△ABC∽△DEF的是( 。
A.AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45°
B.∠A=45°,∠B=55°;∠D=45°,∠F=75°
C.BC=4,AC=6,AB=9;DE=18,EF=8,DF=12
D.AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系 xOy中,對于點P(x,y),以及兩個無公共點的圖形W1和W2 , 若在圖形W1和W2上分別存在點M (x1 , y1 )和N (x2 , y2 ),使得P是線段MN的中點,則稱點M 和N被點P“關聯(lián)”,并稱點P為圖形W1和W2的一個“中位點”,此時P,M,N三個點的坐標滿足x= ,y=
(1)已知點A(0,1),B(4,1),C(3,﹣1),D(3,﹣2),連接AB,CD.
①對于線段AB和線段CD,若點A和C被點P“關聯(lián)”,則點P的坐標為;
②線段AB和線段CD的一“中位點”是Q (2,﹣ ),求這兩條線段上被點Q“關聯(lián)”的兩個點的坐標;
(2)如圖1,已知點R(﹣2,0)和拋物線W1:y=x2﹣2x,對于拋物線W1上的每一個點M,在拋物線W2上都存在點N,使得點N和M 被點R“關聯(lián)”,請在圖1 中畫出符合條件的拋物線W2;
(3)正方形EFGH的頂點分別是E(﹣4,1),F(xiàn)(﹣4,﹣1),G(﹣2,﹣1),H(﹣2,1),⊙T的圓心為T(3,0),半徑為1.請在圖2中畫出由正方形EFGH和⊙T的所有“中位點”組成的圖形(若涉及平面中某個區(qū)域時可以用陰影表示),并直接寫出該圖形的面積.

查看答案和解析>>

同步練習冊答案