【題目】一個鋼筋三角形框架三邊長分別為20厘米,50厘米、60厘米,現(xiàn)要再做一個與其相似的鋼筋三角形框架,而只有長是30厘米和50厘米的兩根鋼筋,要求以其中一根為邊,從另一根上截下兩段(允許有余料)作為兩邊,則不同的截法有(  ).
A.一種
B.二種
C.三種
D.四種

【答案】B
【解析】①當把30厘米的鋼筋作為最長邊,把50厘米的鋼筋按10厘米與25厘米兩部分截,則: ;
②當30厘米的鋼筋作為中長邊,把50厘米分截出12厘米和36厘米兩部分,
則有
③當30cm作為最短邊:則另兩邊都會超過50cm , 此時不合題意,
∴一共有兩種截法.
故選B
①當把30厘米作為最長邊,50厘米的鋼筋截成10與25即可,利用三組對應邊的相似比相等即可得所求三角形;②當把30厘米作為中長邊,50厘米的鋼筋截成12與36即可,③當30cm作為最短邊,分別利用三組對應邊的相似比相等即可得所求三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,弦AD⊥AB交BC于點E,過點B作⊙O的切線交DA的延長線于點F,且∠ABF=∠ABC.
(1)求證:AB=AC;
(2)若AD=4,cos∠ABF= ,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,對角線AC、BD相交于O,AD=1,BC=4,則△AOD與△BOC的面積比等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學第二步到第三步運用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學因式分解的結果是否徹底?________.(填徹底不徹底)若不徹底,請直接寫出因式分解的最后結果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列四組線段中,不構成比例線段的一組是( 。.
A.1cm,2cm,3cm,6cm
B.2cm,3cm,4cm,6cm
C.1cm, cm, cm, cm
D.1cm,2cm,3cm,4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了估算河的寬度,我們可以在河對岸選定一個目標點P , 在近岸取點QS , 使點PQ、S共線且直線PS與河垂直,接著再過點S且與PS垂直的直線a上選擇適當?shù)狞cT , 確定PT與過點Q且垂直PS的直線b的交點R . 如果測得QS=45m , ST=90m , QR=60m , 求河的寬度PQ

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,O為坐標系原點,A(3,0),B(3,1),C(0,1),將△OAB沿直線OB折疊,使得點A落在點D處,ODBC交于點E,則OD所在直線的解析式為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,EAD延長線上一點,BEAC于點F , 交DC于點G , 則下列結論中錯誤的是( 。
A.△ABE∽△DGE
B.△CGB∽△DGE
C.△BCF∽△EAF
D.△ACD∽△GCF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,3)和B(﹣3,m).
(1)求反比例函數(shù)y1= 和一次函數(shù)y2=ax+b的表達式;
(2)點C 是坐標平面內一點,BC∥x 軸,AD⊥BC 交直線BC 于點D,連接AC.若AC= CD,求點C的坐標.

查看答案和解析>>

同步練習冊答案