【題目】在平面直角坐標系xOy中,反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,3)和B(﹣3,m).
(1)求反比例函數(shù)y1= 和一次函數(shù)y2=ax+b的表達式;
(2)點C 是坐標平面內一點,BC∥x 軸,AD⊥BC 交直線BC 于點D,連接AC.若AC= CD,求點C的坐標.
【答案】
(1)解:)∵反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,3)和B(﹣3,m),
∴點A(1,3)在反比例函數(shù)y1= 的圖象上,
∴k=1×3=3,
∴反比例函數(shù)的表達式為y1= .
∵點B(﹣3,m)在反比例函數(shù)y1= 的圖象上,
∴m= =﹣1.
∵點A(1,3)和點B(﹣3,﹣1)在一次函數(shù)y2=ax+b的圖象上,
∴ ,解得: .
∴一次函數(shù)的表達式為y2=x+2
(2)解:依照題意畫出圖形,如圖所示.
∵BC∥x軸,
∴點C的縱坐標為﹣1,
∵AD⊥BC于點D,
∴∠ADC=90°.
∵點A的坐標為(1,3),
∴點D的坐標為(1,﹣1),
∴AD=4,
∵在Rt△ADC中,AC2=AD2+CD2,且AC= CD,
∴ ,解得:CD=2.
∴點C1的坐標為(3,﹣1),點C2的坐標為(﹣1,﹣1).
故點C的坐標為(﹣1,﹣1)或(3,﹣1)
【解析】(1)由點A在反比例函數(shù)圖象上,利用待定系數(shù)法可求出反比例函數(shù)的表達式,由點B在反比例函數(shù)圖象上,可求出點B的坐標,由點A、B的坐標利用待定系數(shù)法即可求出一次函數(shù)的表達式;(2)由BC∥x軸結合點B的坐標可得出點C的縱坐標,再由點A的坐標結合AD⊥BC于點D,即可得出點D的坐標,即得出線段AD的長,在Rt△ADC中,由勾股定理以及線段AC、CD間的關系可求出線段CD的長,再結合點D的坐標即可求出點C的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】一個鋼筋三角形框架三邊長分別為20厘米,50厘米、60厘米,現(xiàn)要再做一個與其相似的鋼筋三角形框架,而只有長是30厘米和50厘米的兩根鋼筋,要求以其中一根為邊,從另一根上截下兩段(允許有余料)作為兩邊,則不同的截法有( 。.
A.一種
B.二種
C.三種
D.四種
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2 , 則它移動的距離AA′等于( 。
A.0.5cm
B.1cm
C.1.5cm
D.2cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知A、B、C、D四點的坐標依次為(0,0)、(6,0)(8,6)、(2,6),若一次函數(shù)y=mx﹣6m的圖象將四邊形ABCD的面積分成1:3兩部分,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一列有序數(shù)對:(1,2),(4,5),(9,10),(16,17),…,按此規(guī)律,第5對有序數(shù)對為;若在平面直角坐標系xOy中,以這些有序數(shù)對為坐標的點都在同一條直線上,則這條直線的表達式為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 xOy中,對于點P(x,y),以及兩個無公共點的圖形W1和W2 , 若在圖形W1和W2上分別存在點M (x1 , y1 )和N (x2 , y2 ),使得P是線段MN的中點,則稱點M 和N被點P“關聯(lián)”,并稱點P為圖形W1和W2的一個“中位點”,此時P,M,N三個點的坐標滿足x= ,y=
(1)已知點A(0,1),B(4,1),C(3,﹣1),D(3,﹣2),連接AB,CD.
①對于線段AB和線段CD,若點A和C被點P“關聯(lián)”,則點P的坐標為;
②線段AB和線段CD的一“中位點”是Q (2,﹣ ),求這兩條線段上被點Q“關聯(lián)”的兩個點的坐標;
(2)如圖1,已知點R(﹣2,0)和拋物線W1:y=x2﹣2x,對于拋物線W1上的每一個點M,在拋物線W2上都存在點N,使得點N和M 被點R“關聯(lián)”,請在圖1 中畫出符合條件的拋物線W2;
(3)正方形EFGH的頂點分別是E(﹣4,1),F(xiàn)(﹣4,﹣1),G(﹣2,﹣1),H(﹣2,1),⊙T的圓心為T(3,0),半徑為1.請在圖2中畫出由正方形EFGH和⊙T的所有“中位點”組成的圖形(若涉及平面中某個區(qū)域時可以用陰影表示),并直接寫出該圖形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
根據(jù)聯(lián)合國《人口老齡化及其社會經(jīng)濟后果》中提到的標準,當一個國家或地區(qū)65 歲及以上老年人口數(shù)量占總人口比例超過7%時,意味著這個國家或地區(qū)進入老齡化.從經(jīng)濟角度,一般可用“老年人口撫養(yǎng)比”來反映人口老齡化社會的后果.所謂“老年人口撫養(yǎng)比”是指某范圍人口中,老年人口數(shù)(65 歲及以上人口數(shù))與勞動年齡人口數(shù)(15﹣64 歲人口數(shù))之比,通常用百分比表示,用以表明每100 名勞動年齡人口要負擔多少名老年人.
以下是根據(jù)我國近幾年的人口相關數(shù)據(jù)制作的統(tǒng)計圖和統(tǒng)計表.
2011﹣2014 年全國人口年齡分布圖
2011﹣2014 年全國人口年齡分布表
2011年 | 2012年 | 2013年 | 2014年 | |
0﹣14歲人口占總人口的百分比 | 16.4% | 16.5% | 16.4% | 16.5% |
15﹣64歲人口占總人口的百分比 | 74.5% | 74.1% | 73.9% | 73.5% |
65歲及以上人口占總人口的百分比 | m | 9.4% | 9.7% | 10.0% |
根據(jù)以上材料解答下列問題:
(1)2011 年末,我國總人口約為億,全國人口年齡分布表中m的值為;
(2)若按目前我國的人口自然增長率推測,到2027 年末我國約有14.60 億人.假設0﹣14歲人口占總人口的百分比一直穩(wěn)定在16.5%,15﹣64歲人口一直穩(wěn)定在10 億,那么2027 年末我國0﹣14歲人口約為億,“老年人口撫養(yǎng)比”約為;(精確到1%)
(3)2016 年1 月1 日起我國開始實施“全面二胎”政策,一對夫妻可生育兩個孩子,在未來10年內,假設出生率顯著提高,這(填“會”或“不會”)對我國的“老年人口撫養(yǎng)比”產(chǎn)生影響.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】研究幾何圖形,我們往往先給出這類圖形的定義,再研究它的性質和判定方法.我們給出如下定義:如圖,四邊形ABCD中,AB=AD,CB=CD像這樣兩組鄰邊分別相等的四邊形叫做“箏形”;
(1)小文認為菱形是特殊的“箏形”,你認為他的判斷正確嗎?
(2)小文根據(jù)學習幾何圖形的經(jīng)驗,通過觀察、實驗、歸納、類比、猜想、證明等方法,對AB≠BC的“箏形”的性質和判定方法進行了探究.下面是小文探究的過程,請補充完成:
①他首先發(fā)現(xiàn)了這類“箏形”有一組對角相等,并進行了證明,請你完成小文的證明過程.
已知:如圖,在”箏形”ABCD中,AB=AD,CB=CD.
求證:∠ABC=∠ADC.
證明:②小文由①得到了這類“箏形”角的性質,他進一步探究發(fā)現(xiàn)這類“箏形”還具有其它性質,請再寫出這類“箏形”的一條性質(除“箏形”的定義外);
③繼性質探究后,小文探究了這類“箏形”的判定方法,寫出這類“箏形”的一條判定方法(除“箏形”的定義外):
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某超市利用一個帶斜坡的平臺裝卸貨物,其縱斷面ACFE如圖所示. AE為臺面,AC垂直于地面,AB表示平臺前方的斜坡.斜坡的坡角∠ABC為45°,坡長AB為2m.為保障安全,又便于裝卸貨物,決定減小斜坡AB的坡角,AD 是改造后的斜坡(點D在直線BC上),坡角∠ADC為31°.求斜坡AD底端D與平臺AC的距離CD.(結果精確到0.01m)[參考數(shù)據(jù):sin31°=0.515,cos31°=0.857,tan31°=0.601, ≈1.414].
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com