【題目】如圖①,平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A坐標(biāo)為(﹣4,0),AB∥y軸,點(diǎn)C在y軸上,一次函數(shù)y=x+3的圖象經(jīng)過點(diǎn)B、C.
(1)點(diǎn)C的坐標(biāo)為_____,點(diǎn)B的坐標(biāo)為_____;
(2)如圖②,直線l經(jīng)過點(diǎn)C,且與直線AB交于點(diǎn)M,O'與O關(guān)于直線l對(duì)稱,連接CO'并延長(zhǎng),交射線AB于點(diǎn)D.
①求證:△CMD是等腰三角形;
②當(dāng)CD=5時(shí),求直線l的函數(shù)表達(dá)式.
【答案】 (0,3) (﹣4,2) (2)見解析 (3) y=x+3
【解析】試題分析:(1)設(shè)點(diǎn)C的坐標(biāo)為(0,y),把x=0代入y=x+3中得y=3,即可求出C點(diǎn)的坐標(biāo);設(shè)點(diǎn)B的坐標(biāo)為(-4,y),把x=-4代入y=x+3中得y=2,即可求出B點(diǎn)的坐標(biāo);
(2)①根據(jù)對(duì)稱的性質(zhì)和平行線的性質(zhì),推知∠CMD=∠MCD,故MD=CD,所以CMD是等腰三角形;
②如圖②,過點(diǎn)D作DP⊥y軸于點(diǎn)P.利用勾股定理求得CP的長(zhǎng)度,然后結(jié)合坐標(biāo)與圖形的性質(zhì)求得點(diǎn)M的坐標(biāo),利用待定系數(shù)法求得直線l的解析式即可.
試題解析:
(1)如圖①,∵A(﹣4,0),AB∥y軸,直線y=x+3經(jīng)過點(diǎn)B、C,
設(shè)點(diǎn)C的坐標(biāo)為(0,y),把x=0代入y=vx+3x+3中得y=3,
∴C(0,3);
設(shè)點(diǎn)B的坐標(biāo)為(﹣4,y),把x=4代入y=x+3中得y=2,
∴B(﹣4,2);
故答案是:(0,3);(﹣4,2);
(2)①證明:∵AB∥y軸,
∴∠OCM=∠CMD.
∵∠OCM=∠MCD,
∴∠CMD=∠MCD,
∴MD=CD,
∴CMD是等腰三角形;
②如圖②,過點(diǎn)D作DP⊥y軸于點(diǎn)P.
在直角△DCP中,由勾股定理得到:CP==3,
∴OP=AD=CO+CP=3+3=6,
∴AB=AD﹣DM=6﹣5=1,
∴點(diǎn)M的坐標(biāo)是(﹣4,1).
設(shè)直線l的解析式為y=kx+b(k≠0).
把M(﹣4,1)、C(0,3)分別代入,得
,
解得
故直線l的解析式為y=x+3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= (x>0)的圖象與邊長(zhǎng)是6的正方形OABC的兩邊AB,BC分別相交于M,N 兩點(diǎn),△OMN的面積為10.若動(dòng)點(diǎn)P在x軸上,則PM+PN的最小值是( )
A. 6 B. 10 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填入相應(yīng)的括號(hào)內(nèi):11,-,6.5,-8,3,0,1,-1,-3.14.
(1)正數(shù)集合:{ …};(2)負(fù)數(shù)集合:{ …};
(3)整數(shù)集合:{ …};(4)正整數(shù)集合:{ …};
(5)負(fù)整數(shù)集合:{ …};(6)分?jǐn)?shù)集合:{ …};
(7)正分?jǐn)?shù)集合:{ …};(8)負(fù)分?jǐn)?shù)集合:{ …};
(9)有理數(shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家超市以相同的價(jià)格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計(jì)購(gòu)買商品超出300元之后,超出部分按原價(jià)8折優(yōu)惠;在乙超市累計(jì)購(gòu)買商品超出200元之后,超出部分按原價(jià)8.5折優(yōu)惠.設(shè)顧客預(yù)計(jì)累計(jì)購(gòu)物元().
(1)請(qǐng)用含的代數(shù)式分別表示顧客在兩家超市購(gòu)物所付的費(fèi)用;
(2)李明準(zhǔn)備購(gòu)買500元的商品,你認(rèn)為他應(yīng)該去哪家超市?請(qǐng)說明理由;
(3)計(jì)算一下,李明購(gòu)買多少元的商品時(shí),到兩家超市購(gòu)物所付的費(fèi)用一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AB延長(zhǎng)線上一點(diǎn),D為線段BC上一點(diǎn),CD=2BD,E為線段AC上一點(diǎn),CE=2AE
(1)若AB=18,BC=21,求DE的長(zhǎng);
(2)若AB=a,求DE的長(zhǎng);(用含a的代數(shù)式表示)
(3)若圖中所有線段的長(zhǎng)度之和是線段AD長(zhǎng)度的7倍,則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京召開的國(guó)際數(shù)學(xué)家大會(huì)會(huì)徽取材于我國(guó)古代數(shù)學(xué)家趙爽弦圖它是由四全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示,如果大正方形 的面積是13,小正方形的面積是1,直角三角形的短直角邊為a,較長(zhǎng)直角邊為b,下列說法:
①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.
其中正確結(jié)論序號(hào)是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點(diǎn),則以DE為直徑的圓與BC的位置關(guān)系是( )
A.相切
B.相交
C.相離
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是以數(shù)軸原點(diǎn)O為圓心,半徑為1的圓,∠AOB=45°,點(diǎn)P在數(shù)軸上運(yùn)動(dòng),過點(diǎn)P且與OB平行的直線與⊙O有公共點(diǎn),求OP的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點(diǎn)P是BC上的一點(diǎn).
(1)請(qǐng)寫出圖中∠1的一對(duì)同位角,一對(duì)內(nèi)錯(cuò)角,一對(duì)同旁內(nèi)角;
(2)求∠EFC與∠E的度數(shù);
(3)若∠BFP=46°,請(qǐng)判斷CE與PF是否平行?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com