【題目】如圖,是的直徑,、為上的點(diǎn),為圓外一點(diǎn),、均與圓相切,設(shè),,則與滿足的關(guān)系式為( )
A.B.C.D.以上都不對
【答案】B
【解析】
連結(jié)OC,OD,則∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根據(jù)OB=OC,OD=OA,可得∠BOC=180°-2∠B,∠AOD=180°-2∠A,則可得出α與β的關(guān)系式.
連結(jié)OC,OD,
∵PC、PD均與圓相切,
∴∠PCO=90°,∠PDO=90°,
∵∠PCO+∠COD+∠ODP+∠CPD=360°,
∴∠CPD+∠COD=180°,
∵OB=OC,OD=OA,
∴∠BOC=180°-2∠B,∠AOD=180°-2∠A,
∴∠COD+∠BOC+∠AOD=180°,
∴180°-∠CPD+180°-2∠B+180°-2∠A=180°.
∴.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,M是AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),
沿AC方向勻速運(yùn)動(dòng)到終點(diǎn)C,動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速運(yùn)動(dòng)到終點(diǎn)B.已知P,Q兩點(diǎn)同時(shí)出發(fā),并同時(shí)到達(dá)終點(diǎn).連結(jié)MP,MQ,PQ.在整個(gè)運(yùn)動(dòng)過程中,△MPQ的面積大小變化情況是【 】
A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時(shí)間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時(shí)小亮與媽媽相距多少米(精確到1米)?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,東營市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角為_______°;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對校園安全知識達(dá)到“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙A的半徑為1,圓心A點(diǎn)的坐標(biāo)為(2,1).直線OM是一次函數(shù)y=-x的圖象.將直線OM沿x軸正方向平行移動(dòng).
(1)填空:直線OM與x軸所夾的銳角度數(shù)為 °;
(2)求出運(yùn)動(dòng)過程中⊙A與直線OM相切時(shí)的直線OM的函數(shù)關(guān)系式;(可直接用(1)中的結(jié)論)
(3)運(yùn)動(dòng)過程中,當(dāng)⊙A與直線OM相交所得的弦對的圓心角為90°時(shí),直線OM的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊△ABC的邊長為3,分別以頂點(diǎn)B、A、C為圓心,BA長為半徑作、、,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形,設(shè)點(diǎn)l為對稱軸的交點(diǎn).
(1)如圖2,將這個(gè)圖形的頂點(diǎn)A與線段MN作無滑動(dòng)的滾動(dòng),當(dāng)它滾動(dòng)一周后點(diǎn)A與端點(diǎn)N重合,則線段MN的長為 ;
(2)如圖3,將這個(gè)圖形的頂點(diǎn)A與等邊△DEF的頂點(diǎn)D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動(dòng)的滾動(dòng)當(dāng)它第一次回到起始位置時(shí),求這個(gè)圖形在運(yùn)動(dòng)過程中所掃過的區(qū)域的面積;
(3)如圖4,將這個(gè)圖形的頂點(diǎn)B與⊙O的圓心O重合,⊙O的半徑為3,將它沿⊙O的圓周作無滑動(dòng)的滾動(dòng),當(dāng)它第n次回到起始位置時(shí),點(diǎn)I所經(jīng)過的路徑長為 (請用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某排球隊(duì)6名場上隊(duì)員的身高(單位:cm)是:180,182,184,186,190,194.現(xiàn)用一名身高為188cm的隊(duì)員換下場上身高為182cm的隊(duì)員,與換人前相比,場上隊(duì)員的身高
A.平均數(shù)變小,方差變小B.平均數(shù)變小,方差變大
C.平均數(shù)變大,方差變小D.平均數(shù)變大,方差變大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD⊥AC于D,CE⊥AB于E。
(1)求證:△ABD∽△ACE
(2)連接DE,求證:∠ADE=∠ABC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com