【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處60 米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1: 的斜坡DB前進30米到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°= ,cos = ,tan53°= ≈1.732,結(jié)果精確到0.1米)

【答案】解:如圖作BN⊥CD于N,BM⊥AC于M.

在Rt△BDN中,BD=30,BN:ND=1:

∴BN=15,DN=15

∵∠C=∠CMB=∠CNB=90°,

∴四邊形CMBN是矩形,

∴CM=BN=15,BM=CN=60 ﹣15 =45 ,

在Rt△ABM中,tan∠ABM= = ,

∴AM=60 ,

∴AC=AM+CM=15+60


【解析】如圖作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出線段BN,在RT△ABM中求出AM,再證明四邊形CMBN是矩形,得CM=BN即可解決問題.
【考點精析】本題主要考查了關于仰角俯角問題的相關知識點,需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有一塊三角形的空地,其三邊的長分別為20m,30m,40m,現(xiàn)要把它分成面積為234的三部分,分別種植不同的花草,請你設計一種方案,并簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABBE于點B,DEBE于點E.

(1)若∠A=D,AB=DE,則ABCDEF全等的理由是____;

(2)若∠A=D,BC=EF,則ABCDEF全等的理由是_________;

(3)AB=DE,BC=EF,則ABCDEF全等的理由是_______;

(4)AB=DE,AC=DF,則ABCDEF全等的理由是_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填寫推理理由:

已知:如圖,D,F,E分別是BC,AC,AB上的點,DFAB,DEAC,

試說明∠EDF=A.

解:∵DFAB(已知),

∴∠A+AFD=180°(____________________).

DEAC(已知),

∴∠AFD+EDF=180°(____________________).

∴∠A=EDF(____________________).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,C=30°,ADBCD,BE是∠ABC的平分線,且交ADP,如果AP=2,則AC的長為( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點DAB邊的中點,過點D作邊AB的垂線l,El上任意一點,且AC=5,BC=8,則△AEC的周長最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點BF、C、E在直線l上(F、C之間不能直接測量),點A、Dl異側(cè),測得ABDE,ABDE,AD

(1)求證:△ABC≌△DEF;

(2)BE=10mBF=3m,求FC的長度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過一段時間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結(jié)果保留整數(shù))?
(參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高校共有5個大餐廳和2個小餐廳,經(jīng)過測試:同時開放1個大餐廳、2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳,1個小餐廳,可供2280名學生就餐.

1)求1個大餐廳,1個小餐廳分別可供多少名 就餐?

2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由.

查看答案和解析>>

同步練習冊答案