【題目】定義:若一個(gè)四邊形能被其中的一條對(duì)角線分割成兩個(gè)相似三角形,則稱這個(gè)四邊形為友誼四邊形.我們熟知的平行四邊形就是友誼四邊形,

1)如圖1,在4×4的正方形網(wǎng)格中有一個(gè)RtABC,請(qǐng)你在網(wǎng)格中找格點(diǎn)D,使得四邊形ABCD是被AC分割成的友誼四邊形,(要求畫出點(diǎn)D2種不同位置)

2)如圖2BD平分∠ABC,BD4,BC8,四邊形ABCD是被BD分割成的友誼四邊形,求AB長(zhǎng);

3)如圖3,圓內(nèi)接四邊形ABCD中,∠ABC60,點(diǎn)E的中點(diǎn),連結(jié)BECD于點(diǎn)F,連結(jié)AF,∠DAF30°

①求證:四邊形ABCF友誼四邊形

②若△ABC的面積為6,求線段BF的長(zhǎng).

【答案】(1)詳見解析;(2)AB68.(3)①詳見解析;2

【解析】

1)由題意可找到點(diǎn)D位置;
2)分ABD∽△CBD,ABD∽△DBC兩種情況討論,由相似三角形的性質(zhì)可求AB的長(zhǎng)度;
3)①由題意可得∠ABE=EBC=30°,由三角形內(nèi)角和定理和圓的內(nèi)接四邊形性質(zhì)可得∠BAF=BFC,可證ABF∽△FBC,即四邊形ABCF友誼四邊形;
②由相似三角形的性質(zhì)可得BF2=ABBC,由三角形面積公式可求AB×BC=6,即可求BF的長(zhǎng).

解:(1)畫出點(diǎn)D2個(gè)位置.

2)∵四邊形ABCD為被BD分割的友誼四邊形

∴△ABDDBC相似,

ABD∽△CBD

ABBC8

ABD∽△DBC

AB6

綜上所述:AB68

3)①∵E的中點(diǎn),

∴∠ABE=∠CBEABC30°,

∴∠C+BFC150°,

∵四邊形ABCD內(nèi)接于圓O,

∴∠BAD+C180°,

∵∠DAF30°

∴∠C+BAF150°,且∴∠C+BFC150°

∴∠BAF=∠BFC,且∠ABE=∠CBE

∴△ABF∽△FBC

∴四邊形ABCF為友誼四邊形

②如圖,過(guò)點(diǎn)AAGBCBCG,連接AC,

∵△ABF∽△FBC,

BF2ABBC,

SABCBC×AGBC×AB×sin60°6

AB×BC6

AB×BC24BF2,且BF0,

BF2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)計(jì)一個(gè)商標(biāo)圖案:先作矩形ABCD,使AB2BCAB8,再以點(diǎn)A為圓心、AD的長(zhǎng)為半徑作半圓,交BA的延長(zhǎng)線于F,連FC.圖中陰影部分就是商標(biāo)圖案,該商標(biāo)圖案的面積等于(

A. 48B. 416C. 38D. 316

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正五邊形ABCDE內(nèi)接于⊙O點(diǎn)F的中點(diǎn),直線AP與⊙O相切于點(diǎn)A,則∠FAP的度數(shù)是( 。

A. 36°B. 54°C. 60°D. 72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y的圖象交于A(1,4)B(4,n)兩點(diǎn).

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)直接寫出當(dāng)x0時(shí),kx+b的解集.

(3)點(diǎn)Px軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王老師將個(gè)黑球和若干個(gè)白球放入一個(gè)不透明的口袋并攪勻,讓若干學(xué)生進(jìn)行摸球?qū)嶒?yàn),每次摸出一個(gè)球(有放回),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù).

摸球的次數(shù)

摸到黑球的次數(shù)

摸到黑球的頻率

補(bǔ)全上表中的有關(guān)數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計(jì)從袋中摸出一個(gè)球是黑球的概率是________(精確到0.01);

估算袋中白球的個(gè)數(shù);

的條件下,若小強(qiáng)同學(xué)有放回地連續(xù)兩次摸球,用畫樹狀圖或列表的方法計(jì)算他兩次都摸出白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩幢建筑物ABCD,ABBD,CDBD,AB=15mCD=20mABCD之間有一景觀池,小雙在A點(diǎn)測(cè)得池中噴泉處E點(diǎn)的俯角為42°,在C點(diǎn)測(cè)得E點(diǎn)的俯角為45°,點(diǎn)B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(03),(x1,0),其中,2x13,對(duì)稱軸為x1,則下列結(jié)論:2ab0; xax+b)≤a+b方程ax2+bx+c30的兩根為x1'0,x2'2;3a<﹣1.其中正確的是(  )

A. ②③④B. ①②③C. ②④D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某日的錢塘江觀潮信息如表:

按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離(千米)與時(shí)間(分鐘)的函數(shù)關(guān)系用圖3表示,其中:11:40時(shí)甲地交叉潮的潮頭離乙地12千米記為點(diǎn),點(diǎn)坐標(biāo)為,曲線可用二次函數(shù),是常數(shù))刻畫.

(1)求的值,并求出潮頭從甲地到乙地的速度;

(2)11:59時(shí),小紅騎單車從乙地出發(fā),沿江邊公路以千米/分的速度往甲地方向去看潮,問(wèn)她幾分鐘后與潮頭相遇?

(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過(guò)乙地后均勻加速,而單車最高速度為千米/分,小紅逐漸落后,問(wèn)小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度,是加速前的速度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了了解“校園文明監(jiān)督崗”的值圍情況,對(duì)全校各班級(jí)進(jìn)行了抽樣調(diào)查,過(guò)程如下:

收集數(shù)據(jù):從三個(gè)年級(jí)中隨機(jī)抽取了20個(gè)班級(jí),學(xué)校對(duì)各班的評(píng)分如下:

92 71 89 82 69 82 96 83 77 83

80 82 66 73 82 78 92 70 74 59

整理、描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

分?jǐn)?shù)段

班級(jí)數(shù)

1

2

a

8

b

說(shuō)明:成績(jī)90分及以上為優(yōu)秀,分為良好,分為合格,60分以下為不合格

分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、極差如下表,繪制扇形統(tǒng)計(jì)圖:

平均數(shù)

中位數(shù)

眾數(shù)

極差

79

c

82

d

請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

填空:______,____________,______

若我校共120個(gè)班級(jí),估計(jì)得分為優(yōu)秀的班級(jí)有多少個(gè)?

為調(diào)動(dòng)班級(jí)積極性,決定制定一個(gè)獎(jiǎng)勵(lì)標(biāo)準(zhǔn)分,凡到達(dá)或超過(guò)這個(gè)標(biāo)準(zhǔn)分的班級(jí)都將受到獎(jiǎng)勵(lì)如果要使得半數(shù)左右的班級(jí)都能獲獎(jiǎng),獎(jiǎng)勵(lì)標(biāo)準(zhǔn)分應(yīng)定為多少分?并簡(jiǎn)述其理由

查看答案和解析>>

同步練習(xí)冊(cè)答案