【題目】閱讀材料:如圖(一),△ABC的周長為,內切圓O的半徑為r,連結OA、OB、OC,△ABC被劃分為三個小三角形,用S△ABC表示△ABC的面積
∵ S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=,S△OBC=,S△OCA =
∴S△ABC=++= (可作為三角形內切圓半徑公式)
(1)理解與應用:利用公式計算邊長分為5、12、13的三角形內切圓半徑;
(2)類比與推理:若四邊形ABCD存在內切圓(與各邊都相切的圓,如圖(二))且面積為S,各邊長分別為a、b、c、d,試推導四邊形的內切圓半徑公式;
(3)拓展與延伸:若一個n邊形(n為不小于3的整數)存在內切圓,且面積為S,各邊長分別為a1、a2、a3、…、an,合理猜想其內切圓半徑公式(不需說明理由).
【答案】(1)2;(2)r=;(3)r=.
【解析】
試題分析:(1)根據上述三角形的內切圓的半徑公式,由已知條件,結合勾股定理的逆定理得該三角形是直角三角形.可以首先求得其面積是30,其周長是5+12+13=30.再根據其公式代入計算;
(2)同樣連接圓心和四邊形的各個頂點以及圓心和的切點,根據四邊形的面積等于四個直角三角形的面積進行計算;
(3)根據上述方法和結論,即可猜想到:任意多邊形的內切圓的半徑等于其面積的2倍除以多邊形的周長.
試題解析:(1)以5,12,13為邊長的三角形為直角三角形,易求得r=
(2)連接OA,OB,OC,OD,并設內接圓半徑為r,
可得S四邊形ABCD=S△OAB+S△OBC+S△OCD+S△ODA
=ar+br+cr+dr=(a+b+c+d)r.
∴r=;
(3)猜想:r=.
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:如果(x+1)2﹣9=0,那么(x+1)2﹣32=(x+1+3)(x+1﹣3)=(x+4)(x﹣2),則(x+4)(x﹣2)=0,由此可知:x1=﹣4,x2=2.根據以上材料計算x2﹣6x﹣16=0的根為( )
A.x1=﹣2,x2=8B.x1=2,x2=8
C.x1=﹣2,x2=﹣8D.x1=2,x2=﹣8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形網格中,小格的頂點叫做格點。小華按下列要求作圖:①在正方形網格的三條不同的實線上各取一個格點,使其中任意兩點不在同一條實線上;②連結三個格點,使之構成直角三角形。小華在左邊的正方形網格中作出了Rt⊿ABC。請你按照同樣的要求,在右邊的兩個正方形網格中各畫出一個直角三角形,并使三個網格中的直角三角形互不全等。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發(fā)現
如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.
填空:①∠AEB的度數為 ;②線段AD,BE之間的數量關系為 .
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數及線段CM,AE,BE之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a、b、c是三角形的三邊長,如果滿足(a﹣5)2+|b﹣12|+c2﹣26c+169=0,則三角形的形狀是( )
A.底與邊不相等的等腰三角形
B.等邊三角形
C.鈍角三角形
D.直角三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F.
(1)求證:△BED≌△CFD;
(2)若∠A=60°,BE=2,求△ABC的周長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com